Spaces:
Sleeping
Sleeping
BhuiyanMasum
commited on
Commit
·
9c70e7b
1
Parent(s):
214864d
upload api codes
Browse files- Dockerfile +13 -0
- app.py +113 -0
- model_weights.pth +3 -0
- requirements.txt +5 -0
- vocab.pkl +3 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
COPY --chown=user . /app
|
13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
+
import torch.nn as nn
|
5 |
+
import pickle
|
6 |
+
import re
|
7 |
+
|
8 |
+
token_2_id = None
|
9 |
+
# Load the dictionary later
|
10 |
+
with open(r"vocab.pkl", "rb") as f:
|
11 |
+
token_2_id = pickle.load(f)
|
12 |
+
print(token_2_id)
|
13 |
+
|
14 |
+
|
15 |
+
def normalize(text):
|
16 |
+
text = text.lower()
|
17 |
+
text = re.sub(r'[^a-z0-9\s]', '', text)
|
18 |
+
text = ' '.join(text.split())
|
19 |
+
return text
|
20 |
+
|
21 |
+
|
22 |
+
def tokenize(text):
|
23 |
+
tokens = text.split()
|
24 |
+
return tokens
|
25 |
+
|
26 |
+
|
27 |
+
def convert_tokens_2_ids(tokens):
|
28 |
+
input_ids = [
|
29 |
+
token_2_id.get(token, token_2_id['<UNK>']) for token in tokens
|
30 |
+
]
|
31 |
+
return input_ids
|
32 |
+
|
33 |
+
|
34 |
+
def process_text(text, aspect):
|
35 |
+
text_aspect_pair = text + ' ' + aspect
|
36 |
+
normalized_text = normalize(text_aspect_pair)
|
37 |
+
tokens = tokenize(normalized_text)
|
38 |
+
input_ids = convert_tokens_2_ids(tokens)
|
39 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
40 |
+
return input_ids
|
41 |
+
|
42 |
+
|
43 |
+
class ABSA(nn.Module):
|
44 |
+
def __init__(self, vocab_size, num_labels=3):
|
45 |
+
super(ABSA, self).__init__()
|
46 |
+
self.vocab_size = vocab_size
|
47 |
+
self.num_labels = num_labels
|
48 |
+
self.embedding_layer = nn.Embedding(
|
49 |
+
num_embeddings=vocab_size, embedding_dim=256
|
50 |
+
)
|
51 |
+
self.lstm_layer = nn.LSTM(
|
52 |
+
input_size=256,
|
53 |
+
hidden_size=512,
|
54 |
+
batch_first=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
self.fc_layer = nn.Linear(
|
58 |
+
in_features=512,
|
59 |
+
out_features=self.num_labels
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
embeddings = self.embedding_layer(x)
|
64 |
+
lstm_out, _ = self.lstm_layer(embeddings)
|
65 |
+
logits = self.fc_layer(lstm_out[:, -1, :])
|
66 |
+
return logits
|
67 |
+
|
68 |
+
|
69 |
+
model = ABSA(vocab_size=len(token_2_id.keys()), num_labels=3)
|
70 |
+
model.load_state_dict(torch.load(r'model_weights.pth'))
|
71 |
+
model.eval()
|
72 |
+
|
73 |
+
print("Model loaded successfully")
|
74 |
+
|
75 |
+
app = FastAPI()
|
76 |
+
|
77 |
+
|
78 |
+
# space url = "https://masumbhuiyan-myabsaservices.hf.space/"
|
79 |
+
# greet api = "https://masumbhuiyan-myabsaservices.hf.space/greet"
|
80 |
+
# post api = "https://masumbhuiyan-myabsaservices.hf.space/predict"
|
81 |
+
@app.get("/greet")
|
82 |
+
def greet_json():
|
83 |
+
return {"message": "Hello World"}
|
84 |
+
|
85 |
+
|
86 |
+
class TextAspectInput(BaseModel):
|
87 |
+
text: str
|
88 |
+
aspect: str
|
89 |
+
|
90 |
+
|
91 |
+
SENTIMENT_LABELS = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
92 |
+
|
93 |
+
|
94 |
+
@app.post("/predict")
|
95 |
+
async def predict_sentiment(input_data: TextAspectInput):
|
96 |
+
try:
|
97 |
+
text = input_data.text
|
98 |
+
aspect = input_data.aspect
|
99 |
+
input_ids = process_text(text, aspect)
|
100 |
+
|
101 |
+
try:
|
102 |
+
with torch.no_grad():
|
103 |
+
logits = model(input_ids)
|
104 |
+
probs = torch.softmax(logits, dim=-1)
|
105 |
+
prediction = probs.argmax(dim=-1).item()
|
106 |
+
sentiment = SENTIMENT_LABELS[prediction]
|
107 |
+
except Exception as e:
|
108 |
+
raise Exception(e)
|
109 |
+
|
110 |
+
return {"sentiment": sentiment, "probabilities": probs.squeeze().tolist()}
|
111 |
+
except Exception as e:
|
112 |
+
raise HTTPException(status_code=500, detail=str(e))
|
113 |
+
|
model_weights.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b1a6752d09f7a562dd93c6d857987c4df789908e132287bef226ac82c6c2a80
|
3 |
+
size 10208198
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
numpy
|
4 |
+
Pillow
|
5 |
+
torch
|
vocab.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e195b47d3a84c730ff3a7f25df52b335174ba06914d9404bffa7f4422603d60
|
3 |
+
size 47213
|