Mattral commited on
Commit
7f99049
·
verified ·
1 Parent(s): c10af4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -2
app.py CHANGED
@@ -15,8 +15,10 @@ st.write("Let me help you start gardening. Let's grow together!")
15
  # Function to load model
16
  def load_model():
17
  try:
18
- tokenizer = AutoTokenizer.from_pretrained("unsloth/gemma-2-2b")
19
  model = AutoModelForCausalLM.from_pretrained("unsloth/gemma-2-2b")
 
 
20
  return tokenizer, model
21
  except Exception as e:
22
  st.error(f"Failed to load model: {e}")
@@ -43,17 +45,32 @@ for message in st.session_state.messages:
43
  with st.chat_message(message["role"]):
44
  st.write(message["content"])
45
 
46
- # Function to generate response
 
 
 
47
  def generate_response(prompt):
48
  try:
49
  # Tokenize input prompt with dynamic padding and truncation
 
50
  inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
51
 
 
 
 
52
  # Generate output from model
 
53
  outputs = model.generate(inputs["input_ids"], max_new_tokens=100, temperature=0.7, do_sample=True)
54
 
 
 
 
55
  # Decode and return response
56
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
57
  return response
58
  except Exception as e:
59
  st.error(f"Error during text generation: {e}")
 
15
  # Function to load model
16
  def load_model():
17
  try:
18
+ tokenizer = AutoTokenizer.from_pretrained("KhunPop/Gardening")
19
  model = AutoModelForCausalLM.from_pretrained("unsloth/gemma-2-2b")
20
+ #tokenizer = AutoTokenizer.from_pretrained("KhunPop/Gardening", use_auth_token=api_key)
21
+ #model = AutoModelForCausalLM.from_pretrained("KhunPop/Gardening", use_auth_token=api_key)
22
  return tokenizer, model
23
  except Exception as e:
24
  st.error(f"Failed to load model: {e}")
 
45
  with st.chat_message(message["role"]):
46
  st.write(message["content"])
47
 
48
+ # Create a text area to display logs
49
+ log_box = st.empty()
50
+
51
+ # Function to generate response with debugging logs
52
  def generate_response(prompt):
53
  try:
54
  # Tokenize input prompt with dynamic padding and truncation
55
+ log_box.text_area("Debugging Logs", "Tokenizing the prompt...", height=200)
56
  inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
57
 
58
+ # Display tokenized inputs
59
+ log_box.text_area("Debugging Logs", f"Tokenized inputs: {inputs['input_ids']}", height=200)
60
+
61
  # Generate output from model
62
+ log_box.text_area("Debugging Logs", "Generating output...", height=200)
63
  outputs = model.generate(inputs["input_ids"], max_new_tokens=100, temperature=0.7, do_sample=True)
64
 
65
+ # Display the raw output from the model
66
+ log_box.text_area("Debugging Logs", f"Raw model output (tokens): {outputs}", height=200)
67
+
68
  # Decode and return response
69
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
70
+
71
+ # Display the final decoded response
72
+ log_box.text_area("Debugging Logs", f"Decoded response: {response}", height=200)
73
+
74
  return response
75
  except Exception as e:
76
  st.error(f"Error during text generation: {e}")