Commit
·
09aab35
1
Parent(s):
59f16cb
new table
Browse files
app.py
CHANGED
@@ -3,20 +3,20 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
|
5 |
# Load data from TSV file
|
6 |
-
df = pd.read_csv(
|
7 |
|
8 |
# Clean up the data
|
9 |
df = df.dropna() # Remove any rows with missing values
|
10 |
df.columns = df.columns.str.strip() # Remove any whitespace from column names
|
11 |
|
12 |
# Rename columns to match our expected format
|
13 |
-
df = df.rename(columns={
|
14 |
-
'model': 'Model Name',
|
15 |
-
'size': 'Size'
|
16 |
-
})
|
17 |
|
18 |
# Create size display format
|
19 |
-
df["Size_Display"] = df["Size"].apply(
|
|
|
|
|
|
|
20 |
|
21 |
# Add size category for filtering
|
22 |
def get_size_category(size):
|
@@ -33,6 +33,7 @@ def get_size_category(size):
|
|
33 |
else:
|
34 |
return ">80B"
|
35 |
|
|
|
36 |
df["Size_Category"] = df["Size"].apply(get_size_category)
|
37 |
|
38 |
|
@@ -77,11 +78,58 @@ def filter_and_search_models(search_query, size_ranges, sort_by):
|
|
77 |
# Round numerical values for better display
|
78 |
for col in ["Separate Grounding Score", "Separate Quality Score", "Combined Score"]:
|
79 |
display_df = display_df.copy() # Create a copy to avoid SettingWithCopyWarning
|
80 |
-
display_df[col] = display_df[col].round(
|
81 |
|
82 |
return display_df
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
# Create the Gradio interface
|
86 |
with gr.Blocks(title="FACTS Grounding Leaderboard", theme=gr.themes.Base()) as app:
|
87 |
gr.Markdown("# 🏆 FACTS Grounding Leaderboard")
|
@@ -127,33 +175,26 @@ with gr.Blocks(title="FACTS Grounding Leaderboard", theme=gr.themes.Base()) as a
|
|
127 |
total_models = gr.Markdown(f"**Showing {len(df)} models**")
|
128 |
|
129 |
# Results table below filters
|
130 |
-
results_table = gr.
|
131 |
-
value=
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
135 |
),
|
136 |
-
headers=[
|
137 |
-
"Rank",
|
138 |
-
"Model Name",
|
139 |
-
"Size",
|
140 |
-
"Separate Grounding Score",
|
141 |
-
"Separate Quality Score",
|
142 |
-
"Combined Score",
|
143 |
-
],
|
144 |
-
datatype=["number", "str", "str", "number", "number", "number"],
|
145 |
elem_id="leaderboard-table",
|
146 |
-
interactive=False,
|
147 |
-
wrap=True,
|
148 |
)
|
149 |
|
150 |
# Metric explanations at the bottom
|
151 |
with gr.Accordion("Metric Explanations", open=False):
|
152 |
-
gr.Markdown(
|
153 |
-
|
154 |
-
- **
|
155 |
-
- **
|
156 |
-
|
|
|
|
|
157 |
|
158 |
with gr.TabItem("About"):
|
159 |
gr.Markdown(
|
@@ -206,7 +247,7 @@ with gr.Blocks(title="FACTS Grounding Leaderboard", theme=gr.themes.Base()) as a
|
|
206 |
def update_table(search, sizes, sort_by):
|
207 |
filtered_df = filter_and_search_models(search, sizes, sort_by)
|
208 |
model_count = f"**Showing {len(filtered_df)} models**"
|
209 |
-
return filtered_df, model_count
|
210 |
|
211 |
# Connect all inputs to the update function
|
212 |
search_box.change(
|
@@ -229,14 +270,46 @@ with gr.Blocks(title="FACTS Grounding Leaderboard", theme=gr.themes.Base()) as a
|
|
229 |
|
230 |
# Add custom CSS for better styling
|
231 |
app.css = """
|
232 |
-
|
233 |
-
font-size: 14px;
|
234 |
margin-top: 20px;
|
235 |
max-height: 600px;
|
236 |
overflow-y: auto;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
}
|
238 |
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
text-align: center;
|
241 |
font-weight: 600;
|
242 |
color: #444;
|
@@ -244,64 +317,106 @@ with gr.Blocks(title="FACTS Grounding Leaderboard", theme=gr.themes.Base()) as a
|
|
244 |
width: 60px;
|
245 |
}
|
246 |
|
247 |
-
|
248 |
font-weight: 500;
|
249 |
max-width: 400px;
|
|
|
250 |
}
|
251 |
|
252 |
-
|
253 |
text-align: center;
|
254 |
font-weight: 500;
|
255 |
color: #666;
|
|
|
256 |
}
|
257 |
|
258 |
-
|
259 |
text-align: center;
|
|
|
|
|
260 |
}
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
gap: 15px;
|
266 |
-
margin-top: 10px;
|
267 |
}
|
268 |
|
269 |
-
.
|
270 |
-
|
271 |
-
align-items: center;
|
272 |
-
margin: 0;
|
273 |
}
|
274 |
|
275 |
-
.
|
276 |
-
|
277 |
}
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
background-color: #fffbf0;
|
282 |
}
|
283 |
|
284 |
-
|
285 |
-
background-color: #
|
286 |
}
|
287 |
|
288 |
-
|
289 |
-
background-color: #
|
290 |
}
|
291 |
|
292 |
-
|
293 |
background-color: #fff0f5;
|
294 |
}
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
background-color: #f8f9fa;
|
299 |
-
font-weight: 600;
|
300 |
}
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
}
|
306 |
"""
|
307 |
|
|
|
3 |
import numpy as np
|
4 |
|
5 |
# Load data from TSV file
|
6 |
+
df = pd.read_csv("FACTS.tsv", sep="\t")
|
7 |
|
8 |
# Clean up the data
|
9 |
df = df.dropna() # Remove any rows with missing values
|
10 |
df.columns = df.columns.str.strip() # Remove any whitespace from column names
|
11 |
|
12 |
# Rename columns to match our expected format
|
13 |
+
df = df.rename(columns={"model": "Model Name", "size": "Size"})
|
|
|
|
|
|
|
14 |
|
15 |
# Create size display format
|
16 |
+
df["Size_Display"] = df["Size"].apply(
|
17 |
+
lambda x: f"{int(x)}B" if x == int(x) else f"{x}B"
|
18 |
+
)
|
19 |
+
|
20 |
|
21 |
# Add size category for filtering
|
22 |
def get_size_category(size):
|
|
|
33 |
else:
|
34 |
return ">80B"
|
35 |
|
36 |
+
|
37 |
df["Size_Category"] = df["Size"].apply(get_size_category)
|
38 |
|
39 |
|
|
|
78 |
# Round numerical values for better display
|
79 |
for col in ["Separate Grounding Score", "Separate Quality Score", "Combined Score"]:
|
80 |
display_df = display_df.copy() # Create a copy to avoid SettingWithCopyWarning
|
81 |
+
display_df[col] = display_df[col].round(3) # Reduced to 3 decimal places
|
82 |
|
83 |
return display_df
|
84 |
|
85 |
|
86 |
+
def create_html_table(df):
|
87 |
+
"""Create an HTML table from the dataframe"""
|
88 |
+
html = '<div class="leaderboard-container">'
|
89 |
+
html += '<table class="leaderboard-table">'
|
90 |
+
|
91 |
+
# Header
|
92 |
+
html += "<thead><tr>"
|
93 |
+
for col in df.columns:
|
94 |
+
html += f"<th>{col}</th>"
|
95 |
+
html += "</tr></thead>"
|
96 |
+
|
97 |
+
# Body
|
98 |
+
html += "<tbody>"
|
99 |
+
for _, row in df.iterrows():
|
100 |
+
# Add model family class for styling
|
101 |
+
model_name = row["Model Name"]
|
102 |
+
row_class = ""
|
103 |
+
if "meta-llama" in model_name:
|
104 |
+
row_class = "llama-row"
|
105 |
+
elif "deepseek" in model_name:
|
106 |
+
row_class = "deepseek-row"
|
107 |
+
elif "Qwen" in model_name:
|
108 |
+
row_class = "qwen-row"
|
109 |
+
elif "google" in model_name:
|
110 |
+
row_class = "google-row"
|
111 |
+
|
112 |
+
html += f'<tr class="{row_class}">'
|
113 |
+
for i, col in enumerate(df.columns):
|
114 |
+
cell_class = ""
|
115 |
+
if i == 0: # Rank column
|
116 |
+
cell_class = "rank-cell"
|
117 |
+
elif i == 1: # Model name
|
118 |
+
cell_class = "model-cell"
|
119 |
+
elif i == 2: # Size
|
120 |
+
cell_class = "size-cell"
|
121 |
+
else: # Score columns
|
122 |
+
cell_class = "score-cell"
|
123 |
+
|
124 |
+
html += f'<td class="{cell_class}">{row[col]}</td>'
|
125 |
+
html += "</tr>"
|
126 |
+
html += "</tbody>"
|
127 |
+
html += "</table>"
|
128 |
+
html += "</div>"
|
129 |
+
|
130 |
+
return html
|
131 |
+
|
132 |
+
|
133 |
# Create the Gradio interface
|
134 |
with gr.Blocks(title="FACTS Grounding Leaderboard", theme=gr.themes.Base()) as app:
|
135 |
gr.Markdown("# 🏆 FACTS Grounding Leaderboard")
|
|
|
175 |
total_models = gr.Markdown(f"**Showing {len(df)} models**")
|
176 |
|
177 |
# Results table below filters
|
178 |
+
results_table = gr.HTML(
|
179 |
+
value=create_html_table(
|
180 |
+
filter_and_search_models(
|
181 |
+
"",
|
182 |
+
["0-5B", "5-10B", "10-20B", "20-40B", "40-80B", ">80B"],
|
183 |
+
"Combined Score",
|
184 |
+
)
|
185 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
elem_id="leaderboard-table",
|
|
|
|
|
187 |
)
|
188 |
|
189 |
# Metric explanations at the bottom
|
190 |
with gr.Accordion("Metric Explanations", open=False):
|
191 |
+
gr.Markdown(
|
192 |
+
"""
|
193 |
+
- **Grounding Score**: Percentage of responses where all claims are supported by the context
|
194 |
+
- **Quality Score**: Percentage of responses that adequately address the user's request
|
195 |
+
- **Combined Score**: Percentage of responses that pass both quality and grounding checks
|
196 |
+
"""
|
197 |
+
)
|
198 |
|
199 |
with gr.TabItem("About"):
|
200 |
gr.Markdown(
|
|
|
247 |
def update_table(search, sizes, sort_by):
|
248 |
filtered_df = filter_and_search_models(search, sizes, sort_by)
|
249 |
model_count = f"**Showing {len(filtered_df)} models**"
|
250 |
+
return create_html_table(filtered_df), model_count
|
251 |
|
252 |
# Connect all inputs to the update function
|
253 |
search_box.change(
|
|
|
270 |
|
271 |
# Add custom CSS for better styling
|
272 |
app.css = """
|
273 |
+
.leaderboard-container {
|
|
|
274 |
margin-top: 20px;
|
275 |
max-height: 600px;
|
276 |
overflow-y: auto;
|
277 |
+
border-radius: 8px;
|
278 |
+
border: 1px solid #e9ecef;
|
279 |
+
}
|
280 |
+
|
281 |
+
.leaderboard-table {
|
282 |
+
width: 100%;
|
283 |
+
border-collapse: collapse;
|
284 |
+
font-size: 14px;
|
285 |
+
background: white;
|
286 |
}
|
287 |
|
288 |
+
.leaderboard-table th {
|
289 |
+
background-color: #f8f9fa;
|
290 |
+
font-weight: 600;
|
291 |
+
padding: 12px 8px;
|
292 |
+
text-align: center;
|
293 |
+
border-bottom: 2px solid #dee2e6;
|
294 |
+
position: sticky;
|
295 |
+
top: 0;
|
296 |
+
z-index: 10;
|
297 |
+
}
|
298 |
+
|
299 |
+
.leaderboard-table th:first-child {
|
300 |
+
width: 60px;
|
301 |
+
}
|
302 |
+
|
303 |
+
.leaderboard-table td {
|
304 |
+
padding: 10px 8px;
|
305 |
+
border-bottom: 1px solid #f1f3f4;
|
306 |
+
}
|
307 |
+
|
308 |
+
.leaderboard-table tbody tr:hover {
|
309 |
+
background-color: #f8f9fa;
|
310 |
+
}
|
311 |
+
|
312 |
+
.rank-cell {
|
313 |
text-align: center;
|
314 |
font-weight: 600;
|
315 |
color: #444;
|
|
|
317 |
width: 60px;
|
318 |
}
|
319 |
|
320 |
+
.model-cell {
|
321 |
font-weight: 500;
|
322 |
max-width: 400px;
|
323 |
+
word-wrap: break-word;
|
324 |
}
|
325 |
|
326 |
+
.size-cell {
|
327 |
text-align: center;
|
328 |
font-weight: 500;
|
329 |
color: #666;
|
330 |
+
min-width: 60px;
|
331 |
}
|
332 |
|
333 |
+
.score-cell {
|
334 |
text-align: center;
|
335 |
+
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
|
336 |
+
font-size: 13px;
|
337 |
}
|
338 |
|
339 |
+
/* Model family row styling */
|
340 |
+
.llama-row {
|
341 |
+
background-color: #fffbf0;
|
|
|
|
|
342 |
}
|
343 |
|
344 |
+
.llama-row:hover {
|
345 |
+
background-color: #fef7e0;
|
|
|
|
|
346 |
}
|
347 |
|
348 |
+
.deepseek-row {
|
349 |
+
background-color: #f0f8ff;
|
350 |
}
|
351 |
|
352 |
+
.deepseek-row:hover {
|
353 |
+
background-color: #e6f3ff;
|
|
|
354 |
}
|
355 |
|
356 |
+
.qwen-row {
|
357 |
+
background-color: #f5fff5;
|
358 |
}
|
359 |
|
360 |
+
.qwen-row:hover {
|
361 |
+
background-color: #eaffea;
|
362 |
}
|
363 |
|
364 |
+
.google-row {
|
365 |
background-color: #fff0f5;
|
366 |
}
|
367 |
|
368 |
+
.google-row:hover {
|
369 |
+
background-color: #ffe6f0;
|
|
|
|
|
370 |
}
|
371 |
|
372 |
+
.size-filter {
|
373 |
+
margin-top: 10px;
|
374 |
+
}
|
375 |
+
|
376 |
+
.size-filter > div {
|
377 |
+
display: flex !important;
|
378 |
+
flex-wrap: wrap !important;
|
379 |
+
gap: 8px !important;
|
380 |
+
align-items: center !important;
|
381 |
+
}
|
382 |
+
|
383 |
+
.size-filter label {
|
384 |
+
display: flex !important;
|
385 |
+
align-items: center !important;
|
386 |
+
background: #f8f9fa !important;
|
387 |
+
border: 2px solid #e9ecef !important;
|
388 |
+
border-radius: 8px !important;
|
389 |
+
padding: 8px 12px !important;
|
390 |
+
margin: 0 !important;
|
391 |
+
cursor: pointer !important;
|
392 |
+
transition: all 0.2s ease !important;
|
393 |
+
font-weight: 500 !important;
|
394 |
+
font-size: 14px !important;
|
395 |
+
color: #495057 !important;
|
396 |
+
min-width: 70px !important;
|
397 |
+
justify-content: center !important;
|
398 |
+
}
|
399 |
+
|
400 |
+
.size-filter label:hover {
|
401 |
+
background: #e9ecef !important;
|
402 |
+
border-color: #6c757d !important;
|
403 |
+
}
|
404 |
+
|
405 |
+
.size-filter input[type="checkbox"] {
|
406 |
+
display: none !important;
|
407 |
+
}
|
408 |
+
|
409 |
+
.size-filter input[type="checkbox"]:checked + span {
|
410 |
+
background: #0d6efd !important;
|
411 |
+
color: white !important;
|
412 |
+
border-color: #0d6efd !important;
|
413 |
+
}
|
414 |
+
|
415 |
+
.size-filter label:has(input[type="checkbox"]:checked) {
|
416 |
+
background: #0d6efd !important;
|
417 |
+
color: white !important;
|
418 |
+
border-color: #0d6efd !important;
|
419 |
+
box-shadow: 0 2px 4px rgba(13, 110, 253, 0.2) !important;
|
420 |
}
|
421 |
"""
|
422 |
|