Mister56's picture
Update app.py
b49241f verified
import gradio as gr
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
from tensorflow.keras.layers import DepthwiseConv2D
def custom_depthwise_conv2d(*args, **kwargs):
if 'groups' in kwargs:
del kwargs['groups'] # Retirer 'groups'
return DepthwiseConv2D(*args, **kwargs)
# Load model
model = load_model("keras_model.h5", custom_objects={'DepthwiseConv2D': custom_depthwise_conv2d}, compile=False)
# Load labels
with open("labels.txt", "r") as file:
class_names = file.readlines()
# Create predict fonction
def predict(image):
image = ImageOps.fit(image, (224, 224), Image.Resampling.LANCZOS)
image_array = np.asarray(image)
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
data[0] = normalized_image_array
# Make prediction
prediction = model.predict(data)
index = np.argmax(prediction)
class_name = class_names[index].strip()
confidence_score = prediction[0][index]
return class_name, confidence_score
# Créer l'interface Gradio
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Download image"),
outputs=[
gr.Label(label="Class predict"),
gr.Number(label="Confidence Score")
],
title="Medical Assistant",
description="Upload a dental image and our app will predict its class."
)
iface.launch()