Add application file
Browse files- app.py +212 -0
- requirements.txt +10 -0
- yolov12l.pt +3 -0
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import base64
|
4 |
+
import json
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import whisper
|
9 |
+
from ultralytics import YOLO
|
10 |
+
import requests
|
11 |
+
from fastapi import FastAPI
|
12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
13 |
+
|
14 |
+
# Initialize models
|
15 |
+
print("Loading Whisper model...")
|
16 |
+
whisper_model = whisper.load_model("small") # Options: tiny, base, small, medium, large
|
17 |
+
|
18 |
+
print("Loading YOLO model...")
|
19 |
+
yolo_model = YOLO('yolov8n.pt') # Using nano version for speed
|
20 |
+
|
21 |
+
# Create FastAPI app
|
22 |
+
app = FastAPI()
|
23 |
+
|
24 |
+
# Add CORS middleware
|
25 |
+
app.add_middleware(
|
26 |
+
CORSMiddleware,
|
27 |
+
allow_origins=["*"], # For demo, allow all
|
28 |
+
allow_credentials=True,
|
29 |
+
allow_methods=["*"],
|
30 |
+
allow_headers=["*"],
|
31 |
+
)
|
32 |
+
|
33 |
+
# Define request/response models
|
34 |
+
from pydantic import BaseModel
|
35 |
+
from typing import Optional, List, Dict, Any
|
36 |
+
|
37 |
+
class AudioRequest(BaseModel):
|
38 |
+
audio: str # base64 encoded audio
|
39 |
+
format: str = "wav"
|
40 |
+
language: Optional[str] = None
|
41 |
+
|
42 |
+
class TextTranslationRequest(BaseModel):
|
43 |
+
text: str
|
44 |
+
from_lang: str
|
45 |
+
to_lang: str
|
46 |
+
|
47 |
+
class DetectionRequest(BaseModel):
|
48 |
+
image: str # base64 encoded image
|
49 |
+
confidence: float = 0.25
|
50 |
+
|
51 |
+
class DetectionResponse(BaseModel):
|
52 |
+
objects: List[Dict[str, Any]]
|
53 |
+
count: int
|
54 |
+
|
55 |
+
# API Endpoints
|
56 |
+
@app.post("/api/transcribe")
|
57 |
+
async def transcribe_audio(request: AudioRequest):
|
58 |
+
try:
|
59 |
+
# Decode base64 audio data
|
60 |
+
audio_bytes = base64.b64decode(request.audio)
|
61 |
+
|
62 |
+
# Save to a temporary file
|
63 |
+
temp_path = "temp_audio.wav"
|
64 |
+
with open(temp_path, "wb") as f:
|
65 |
+
f.write(audio_bytes)
|
66 |
+
|
67 |
+
# Process with Whisper
|
68 |
+
result = whisper_model.transcribe(
|
69 |
+
temp_path,
|
70 |
+
language=request.language if request.language else None
|
71 |
+
)
|
72 |
+
|
73 |
+
# Clean up
|
74 |
+
os.remove(temp_path)
|
75 |
+
|
76 |
+
return {
|
77 |
+
"status": "success",
|
78 |
+
"text": result["text"],
|
79 |
+
"language": result["language"],
|
80 |
+
"segments": result["segments"]
|
81 |
+
}
|
82 |
+
except Exception as e:
|
83 |
+
return {
|
84 |
+
"status": "error",
|
85 |
+
"message": str(e)
|
86 |
+
}
|
87 |
+
|
88 |
+
@app.post("/api/detect_objects")
|
89 |
+
async def detect_objects(request: DetectionRequest):
|
90 |
+
try:
|
91 |
+
# Decode base64 image
|
92 |
+
image_bytes = base64.b64decode(request.image)
|
93 |
+
image = Image.open(io.BytesIO(image_bytes))
|
94 |
+
|
95 |
+
# Run YOLO detection
|
96 |
+
results = yolo_model(image, conf=request.confidence)
|
97 |
+
|
98 |
+
# Process results
|
99 |
+
detections = []
|
100 |
+
for result in results:
|
101 |
+
for i, (box, score, cls) in enumerate(zip(result.boxes.xyxy, result.boxes.conf, result.boxes.cls)):
|
102 |
+
x1, y1, x2, y2 = [float(x) for x in box]
|
103 |
+
detections.append({
|
104 |
+
"class": int(cls),
|
105 |
+
"class_name": result.names[int(cls)],
|
106 |
+
"confidence": float(score),
|
107 |
+
"box": {
|
108 |
+
"x1": x1, "y1": y1, "x2": x2, "y2": y2,
|
109 |
+
"width": x2 - x1,
|
110 |
+
"height": y2 - y1
|
111 |
+
}
|
112 |
+
})
|
113 |
+
|
114 |
+
return {
|
115 |
+
"status": "success",
|
116 |
+
"objects": detections,
|
117 |
+
"count": len(detections)
|
118 |
+
}
|
119 |
+
except Exception as e:
|
120 |
+
return {
|
121 |
+
"status": "error",
|
122 |
+
"message": str(e)
|
123 |
+
}
|
124 |
+
|
125 |
+
# Gradio UI Functions
|
126 |
+
def transcribe_audio_ui(audio, language=None):
|
127 |
+
if audio is None:
|
128 |
+
return "Please upload an audio file."
|
129 |
+
|
130 |
+
try:
|
131 |
+
# Process with Whisper
|
132 |
+
result = whisper_model.transcribe(audio, language=language if language else None)
|
133 |
+
return result["text"]
|
134 |
+
except Exception as e:
|
135 |
+
return f"Error: {str(e)}"
|
136 |
+
|
137 |
+
def detect_objects_ui(image, confidence=0.25):
|
138 |
+
if image is None:
|
139 |
+
return "Please upload an image."
|
140 |
+
|
141 |
+
try:
|
142 |
+
# Run detection
|
143 |
+
results = yolo_model(image, conf=confidence)
|
144 |
+
|
145 |
+
# Create annotated image
|
146 |
+
annotated_img = results[0].plot()
|
147 |
+
|
148 |
+
# Get detections for display
|
149 |
+
detections = []
|
150 |
+
for result in results:
|
151 |
+
for i, (box, score, cls) in enumerate(zip(result.boxes.xyxy, result.boxes.conf, result.boxes.cls)):
|
152 |
+
label = f"{result.names[int(cls)]}: {float(score):.2f}"
|
153 |
+
detections.append(label)
|
154 |
+
|
155 |
+
return Image.fromarray(annotated_img), "\n".join(detections)
|
156 |
+
except Exception as e:
|
157 |
+
return None, f"Error: {str(e)}"
|
158 |
+
|
159 |
+
# Create Gradio Interface
|
160 |
+
with gr.Blocks(title="IPD-Lingual API") as demo:
|
161 |
+
gr.Markdown("# IPD-Lingual Speech & Object Detection API")
|
162 |
+
|
163 |
+
with gr.Tab("Speech Recognition"):
|
164 |
+
gr.Markdown("## Transcribe Audio")
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Column():
|
167 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
168 |
+
language = gr.Dropdown(
|
169 |
+
choices=["en", "hi", "es", "fr", "de", "ja", "ko", None],
|
170 |
+
value=None,
|
171 |
+
label="Language (optional)"
|
172 |
+
)
|
173 |
+
transcribe_btn = gr.Button("Transcribe")
|
174 |
+
with gr.Column():
|
175 |
+
text_output = gr.Textbox(label="Transcription")
|
176 |
+
|
177 |
+
transcribe_btn.click(
|
178 |
+
fn=transcribe_audio_ui,
|
179 |
+
inputs=[audio_input, language],
|
180 |
+
outputs=text_output
|
181 |
+
)
|
182 |
+
|
183 |
+
with gr.Tab("Object Detection"):
|
184 |
+
gr.Markdown("## Detect Objects in Image")
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column():
|
187 |
+
image_input = gr.Image(label="Upload Image")
|
188 |
+
confidence_slider = gr.Slider(
|
189 |
+
minimum=0.1, maximum=1.0, value=0.25,
|
190 |
+
label="Confidence Threshold"
|
191 |
+
)
|
192 |
+
detect_btn = gr.Button("Detect Objects")
|
193 |
+
with gr.Column():
|
194 |
+
image_output = gr.Image(label="Detection Result")
|
195 |
+
labels_output = gr.Textbox(label="Detected Objects")
|
196 |
+
|
197 |
+
detect_btn.click(
|
198 |
+
fn=detect_objects_ui,
|
199 |
+
inputs=[image_input, confidence_slider],
|
200 |
+
outputs=[image_output, labels_output]
|
201 |
+
)
|
202 |
+
|
203 |
+
gr.Markdown("### API Endpoints")
|
204 |
+
gr.Markdown("- POST `/api/transcribe` - Transcribe audio")
|
205 |
+
gr.Markdown("- POST `/api/detect_objects` - Detect objects in images")
|
206 |
+
|
207 |
+
# Mount both FastAPI and Gradio
|
208 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
import uvicorn
|
212 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi>=0.98.0
|
2 |
+
uvicorn>=0.22.0
|
3 |
+
gradio>=3.40.1
|
4 |
+
Pillow>=9.5.0
|
5 |
+
numpy>=1.24.0
|
6 |
+
openai-whisper>=20230314
|
7 |
+
ultralytics>=8.0.0
|
8 |
+
torch>=2.0.0
|
9 |
+
pydantic>=1.10.8
|
10 |
+
python-multipart>=0.0.6
|
yolov12l.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0babd8dc8f775bb64bb052debdff3d8b9e9b57efa9d7bfa11c84bb82c3fec336
|
3 |
+
size 53699086
|