|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel, Tool, PythonInterpreterTool |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class FileReadTool(Tool): |
|
name = "file_reader" |
|
description = """ |
|
This tool reads the content of text files. |
|
It's useful for processing plain text files (.txt, .csv, .json, etc). |
|
""" |
|
inputs = { |
|
"file_path": { |
|
"type": "string", |
|
"description": "The path to the file to read", |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, file_path: str) -> str: |
|
""" |
|
Reads the content of the given file. |
|
""" |
|
try: |
|
|
|
if not os.path.exists(file_path): |
|
return f"Error: File not found at {file_path}" |
|
|
|
|
|
with open(file_path, 'r', encoding='utf-8') as file: |
|
content = file.read() |
|
|
|
|
|
if len(content) > 10000: |
|
content = content[:10000] + "...\n[Text truncated due to length]" |
|
|
|
return content or "File is empty." |
|
|
|
except Exception as e: |
|
return f"Error reading file: {str(e)}" |
|
|
|
class PDFReaderTool(Tool): |
|
name = "pdf_reader" |
|
description = """ |
|
This tool extracts text content from PDF files. |
|
It's useful for reading research papers, reports, or other document types. |
|
""" |
|
inputs = { |
|
"pdf_path": { |
|
"type": "string", |
|
"description": "The path to the PDF file to read", |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, pdf_path: str) -> str: |
|
""" |
|
Extracts text from the given PDF file. |
|
""" |
|
try: |
|
|
|
if not os.path.exists(pdf_path): |
|
return f"Error: PDF file not found at {pdf_path}" |
|
|
|
import PyPDF2 |
|
|
|
|
|
with open(pdf_path, 'rb') as file: |
|
|
|
pdf_reader = PyPDF2.PdfReader(file) |
|
|
|
|
|
num_pages = len(pdf_reader.pages) |
|
|
|
|
|
text = "" |
|
for page_num in range(num_pages): |
|
page = pdf_reader.pages[page_num] |
|
text += page.extract_text() + "\n\n" |
|
|
|
|
|
if len(text) > 10000: |
|
text = text[:10000] + "...\n[Text truncated due to length]" |
|
|
|
return text or "No text could be extracted from the PDF." |
|
|
|
except Exception as e: |
|
return f"Error reading PDF: {str(e)}" |
|
|
|
class ExcelReaderTool(Tool): |
|
name = "excel_reader" |
|
description = """ |
|
This tool reads and processes Excel files (.xlsx, .xls). |
|
It can extract data, calculate statistics, and perform data analysis on spreadsheets. |
|
""" |
|
inputs = { |
|
"excel_path": { |
|
"type": "string", |
|
"description": "The path to the Excel file to read", |
|
}, |
|
"sheet_name": { |
|
"type": "string", |
|
"description": "The name of the sheet to read (optional, defaults to first sheet)", |
|
"nullable": True |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, excel_path: str, sheet_name: str = None) -> str: |
|
""" |
|
Reads and processes the given Excel file. |
|
""" |
|
try: |
|
|
|
if not os.path.exists(excel_path): |
|
return f"Error: Excel file not found at {excel_path}" |
|
|
|
import pandas as pd |
|
|
|
|
|
if sheet_name: |
|
df = pd.read_excel(excel_path, sheet_name=sheet_name) |
|
else: |
|
df = pd.read_excel(excel_path) |
|
|
|
|
|
info = { |
|
"shape": df.shape, |
|
"columns": list(df.columns), |
|
"dtypes": df.dtypes.to_dict(), |
|
"head": df.head(5).to_dict() |
|
} |
|
|
|
|
|
result = f"Excel file: {excel_path}\n" |
|
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n" |
|
result += "Columns:\n" |
|
for col in info['columns']: |
|
result += f"- {col} ({info['dtypes'].get(col)})\n" |
|
|
|
result += "\nPreview (first 5 rows):\n" |
|
result += df.head(5).to_string() |
|
|
|
return result |
|
|
|
except Exception as e: |
|
return f"Error reading Excel file: {str(e)}" |
|
|
|
class ImageAnalysisTool(Tool): |
|
name = "image_analysis" |
|
description = """ |
|
This tool analyzes an image and extracts relevant information from it. |
|
It can describe image content, extract text from images, identify objects, etc. |
|
""" |
|
inputs = { |
|
"image_path": { |
|
"type": "string", |
|
"description": "The path to the image file to analyze", |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, image_path: str) -> str: |
|
""" |
|
Analyzes the given image and returns relevant information using OpenAI's ChatGPT API. |
|
""" |
|
try: |
|
|
|
if not os.path.exists(image_path): |
|
return f"Error: Image file not found at {image_path}" |
|
|
|
import requests |
|
import base64 |
|
import json |
|
from PIL import Image |
|
|
|
|
|
with open(image_path, "rb") as image_file: |
|
image_bytes = image_file.read() |
|
|
|
|
|
encoded_image = base64.b64encode(image_bytes).decode('utf-8') |
|
|
|
|
|
api_key = os.getenv('OPENAI_API_KEY', '') |
|
if not api_key: |
|
return "OpenAI API key not configured. Please add the OPENAI_API_KEY to your environment variables." |
|
|
|
|
|
api_url = "https://api.openai.com/v1/chat/completions" |
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {api_key}" |
|
} |
|
|
|
payload = { |
|
"model": "gpt-4o-mini-2024-07-18", |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": "Analyze this image in detail. Describe what you see, including main subjects, activities, background elements, colors, and any text visible in the image. If there's text in the image, please extract it." |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{encoded_image}" |
|
} |
|
} |
|
] |
|
} |
|
], |
|
"max_tokens": 500 |
|
} |
|
|
|
response = requests.post( |
|
api_url, |
|
headers=headers, |
|
json=payload |
|
) |
|
|
|
if response.status_code != 200: |
|
return f"Error: OpenAI API returned status code {response.status_code}. Details: {response.text}" |
|
|
|
result = response.json() |
|
|
|
|
|
if "choices" in result and len(result["choices"]) > 0: |
|
analysis = result["choices"][0]["message"]["content"] |
|
return f"Image analysis result: {analysis}" |
|
else: |
|
return f"Error: Unexpected response format from OpenAI API: {result}" |
|
|
|
except Exception as e: |
|
return f"Error analyzing image: {str(e)}" |
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("BasicAgent initialized.") |
|
|
|
model = OpenAIServerModel(model_id="openai/gpt-4o-mini",api_key=os.environ["API_KEY"],api_base="https://models.github.ai/inference") |
|
|
|
|
|
self.tools = [ |
|
DuckDuckGoSearchTool(), |
|
FileReadTool(), |
|
PDFReaderTool(), |
|
ExcelReaderTool(), |
|
ImageAnalysisTool(), |
|
|
|
] |
|
|
|
|
|
self.agent = CodeAgent( |
|
model=model, |
|
tools=self.tools, |
|
add_base_tools=True |
|
) |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
try: |
|
answer = self.agent.run(question) |
|
print(f"Agent returned answer (first 50 chars): {answer[:50]}...") |
|
return answer |
|
except Exception as e: |
|
error_msg = f"Error running agent: {str(e)}" |
|
print(error_msg) |
|
return f"I encountered an issue while processing your question: {str(e)}" |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
print(f"Processing task {task_id}: {question_text[:50]}...") |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
print(f"Completed task {task_id}") |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Advanced Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Note:** |
|
Once you click on the "submit" button, it may take quite some time as the agent processes all the questions. |
|
The agent is using SmolaAgents with multiple tools including web search, file processing, and code execution. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Advanced Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |