Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import json | |
import torch | |
import requests | |
import time | |
import random | |
from PIL import Image | |
from typing import Union | |
import os | |
import base64 | |
from together import Together | |
import pathlib | |
import gradio_client as grc | |
import spaces | |
global shrd | |
shrd = gr.JSON(visible=False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using {device}" if device != "cpu" else "Using CPU") | |
def _load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True, revision="2024-05-08", torch_dtype=(torch.bfloat16 if device == 'cuda' else torch.float32)) | |
model = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", device_map=device, trust_remote_code=True, revision="2024-05-08") | |
return (model, tokenizer) | |
class MoonDream(): | |
def __init__(self, model=None, tokenizer=None): | |
self.model, self.tokenizer = (model, tokenizer) | |
if not model or model is None or not tokenizer or tokenizer is None: | |
self.model, self.tokenizer = _load_model() | |
self.device = device | |
self.model.to(self.device) | |
def __call__(self, question, imgs): | |
imn = 0 | |
for img in imgs: | |
img = self.model.encode_image(img) | |
res = self.model.answer_question(question=question, image_embeds=img, tokenizer=self.tokenizer) | |
yield res | |
return | |
md = MoonDream() | |
SYSTEM_PROMPT = "You are Llama 3 70b. You have been given access to Moondream 2 for VQA when given images. When you have a question about an image, simple start your response with the text, '@question\\nMy question?'. When you do this, the request will be sent to Moondream 2. User can see this happening if they turn debug on, so be professional and stay on topic. Any chat from anyone starting with @answer is the answer to last question asked. If something appears out of sync, ask User to clear the chat." | |
def _respond_one(question, img): | |
txt = "" | |
yield (txt := txt + MoonDream()(question, [img])) | |
return txt | |
def respond_batch(question, **imgs): | |
md = MoonDream() | |
for img in imgs.values(): | |
res = md(question, img) | |
for r in res: | |
yield r | |
yield "\n\n\n\n\n\n" | |
return | |
def dual_images(img1: Image): | |
# Ran once for each img to it's respective output. Output should be detailed str of description/feature extraction/interrogation. | |
md = MoonDream() | |
res = md("Describe the image in plain english ", [img1]) | |
txt = "" | |
for r in res: | |
yield (txt := txt + r) | |
return | |
import os | |
def merge_descriptions_to_prompt(mi, d1, d2): | |
from together import Together | |
tog = Together(api_key=os.getenv("TOGETHER_KEY")) | |
res = tog.completions.create(prompt=f"""Describe what would result if the following two descriptions were describing one thing. | |
### Description 1: | |
```text | |
{d1} | |
``` | |
### Description 2: | |
```text | |
{d2} | |
``` | |
Merge-Specific Instructions: | |
```text | |
{mi} | |
``` | |
Ensure you end your output with ```\\n | |
--- | |
Complete Description: | |
```text""", model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024) | |
return res.choices[0].text.split("```")[0] | |
def xform_image_description(img, inst): | |
#md = MoonDream() | |
from together import Together | |
desc = dual_images(img) | |
tog = Together(api_key=os.getenv("TOGETHER_KEY")) | |
prompt=f"""Describe the image in aggressively verbose detail. I must know every freckle upon a man's brow and each blade of the grass intimately.\nDescription: ```text\n{desc}\n```\nInstructions:\n```text\n{inst}\n```\n\n\n---\nDetailed Description:\n```text""" | |
res = tog.completions.create(prompt=prompt, model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024) | |
return res.choices[0].text[len(prompt):].split("```")[0] | |
def simple_desc(img, prompt): | |
import base64 | |
gen = md(prompt, [img]) | |
total = "" | |
for resp in gen: | |
print(total := total + resp) | |
img.resize((192,192)).save("tmp.png") | |
bts = False | |
with open("tmp.png", "rb") as f: | |
bts = f.read() | |
if bts: | |
os.remove("tmp.png") | |
res = { | |
'image_b64': base64.b64encode(bts).decode('utf-8'), | |
'description': total, | |
} | |
cl = grc.Client("http://127.0.0.1:7860/") | |
result = cl.predict( | |
message="Here's the description of your latest image, repeat any relevant details to keep them in context. Here's the description:\n```text\n" + total + "\n```\n\nAnd what the user wanted to begin with: `" + prompt + "`.", | |
api_name="/chat" | |
) | |
print(result) | |
return total, res, {**res, 'chat': result} | |
ifc_imgprompt2text = gr.Interface(simple_desc, inputs=[gr.Image(label="input", type="pil"), gr.Textbox(label="prompt")], outputs=[gr.Textbox(label="description"), gr.JSON(label="json")]) | |
def chat(inpt, mess, desc): | |
from together import Together | |
print(inpt, mess) | |
if mess is None: | |
mess = [] | |
tog = Together(api_key=os.getenv("TOGETHER_KEY")) | |
messages = [{ | |
'role': 'system', | |
'content': SYSTEM_PROMPT | |
}] | |
if desc is not None and desc != "": | |
messages.append({ | |
'role': 'system', | |
'content': 'Here is a description of what you can see at the moment:\n```text\n' + desc + '\n```\nKeep this in mind when answering User\'s questions.' | |
}) | |
messages.append({ | |
'role': 'user', | |
'content': inpt | |
}) | |
for cht in mess: | |
print(cht) | |
res = tog.chat.completions.create( | |
messages=messages, | |
model="meta-llama/Llama-3-70b-chat-hf", stop=["<|eot_id|>"], stream=True, safety_model="Meta-LLama/Llama-Guard-7b") | |
txt = "" | |
for pk in res: | |
print(pk) | |
txt += pk.choices[0].delta.content | |
#mess[-1][-2] += pk.choices[0].delta.content | |
yield txt #, json.dumps(messages)#mess#, json.dumps(messages) | |
chatbot = gr.Chatbot( | |
[ | |
["Hello?", "### Greetings\n\nWell, it seems I have a visitor! What can I do for you? <3;\n\n---"] | |
], | |
elem_id="chatbot", | |
bubble_full_width=False, | |
sanitize_html=False, | |
show_copy_button=True, | |
avatar_images=[ | |
pathlib.Path("image.jpeg"), | |
pathlib.Path("image2.jpeg") | |
]) | |
wizard_chatbot = gr.Chatbot( | |
[ | |
["Hello?", "### Greetings\n\nWell, it seems I have a visitor! What can I do for you? <3;\n\n---"] | |
], | |
elem_id="chatbot_wizard", | |
bubble_full_width=True, | |
sanitize_html=False, | |
show_copy_button=True, | |
avatar_images=[ | |
pathlib.Path("image.png"), | |
pathlib.Path("image2.jpeg") | |
] | |
) | |
def wizard_chat(inpt, mess): | |
from together import Together | |
print(inpt, mess) | |
if mess is None: | |
mess = [] | |
tog = Together(api_key=os.getenv("TOGETHER_KEY")) | |
messages = [] | |
messages.append({ | |
'role': 'user', | |
'content': "English; Please reply in English. " + inpt | |
}) | |
for cht in mess: | |
print(cht) | |
res = tog.chat.completions.create( | |
messages=messages, | |
model="microsoft/WizardLM-2-8x22B", stop=["</s>"], stream=True, safety_model="Meta-LLama/Llama-Guard-7b") | |
txt = "" | |
for pk in res: | |
print(pk) | |
txt += pk.choices[0].delta.content | |
#mess[-1][-2] += pk.choices[0].delta.content | |
yield txt #, json.dumps(messages)#mess#, json.dumps(messages | |
botroom = None | |
def group_chat(room: str, **models): | |
wzn = json.loads(wzn) | |
lmn = json.loads(lmn) | |
print(wzn, lmn) | |
if not "replace_token" in wzn: | |
wzn["replace_token"] = "<|wizard|>" | |
if not "replace_token" in lmn: | |
lmn["replace_token"] = "</Llama>" | |
while room.find(lmn['replace_token']) != -1 or room.find(wzn['replace_token']) != -1: | |
if not "prompt" in wzn and room.find(wzn['replace_token']) != -1: | |
wzn["prompt"] = room[0:room.find(wzn['replace_token'])] | |
if not "prompt" in lmn and room.find(lmn['replace_token']) != -1: | |
lmn["prompt"] = room[0:room.find(lmn['replace_token'])] | |
print(wzn, lmn) | |
if "prompt" in wzn: | |
print(wzn) | |
res = wizard_chat(wzn['prompt'], []) | |
tx = "" | |
for r in res: | |
yield cdd + r | |
tx = r | |
return cdd + txt | |
# Let's make a more genetic model-merge with shadow config that has basic sane defaults for any model. | |
# top_k 42 | |
# top_p 0.842 | |
# max_tokens 1536 | |
# temperature 0.693 | |
shadow_config = { | |
"top_k": 42, | |
"top_p": 0.842, | |
"max_tokens": 1536, | |
"temperature": 0.693, | |
"repetition_penalty": 1.12 | |
} | |
#models = {# | |
# } | |
arch_room = None | |
def wizard_complete(cdd, wzs): | |
tog = Together(api_key=os.getenv("TOGETHER_KEY")) | |
if wzs.startswith("root="): | |
wzs = wzs[5:] | |
wzs = json.loads(wzs) | |
print(wzs) | |
if not "stop" in wzs: | |
wzs["stop"] = ['###', '\n\n\n', '<|im_end|>', '<|im_start|>'] | |
if not "model" in wzs: | |
wzs["model"] = "WizardLM/WizardCoder-Python-34B-V1.0" | |
if not "prompt" in wzs: | |
wzs["prompt"] = cdd | |
res = tog.completions.create(prompt=wzs["prompt"], model=wzs["model"], stop=wzs["stop"], max_tokens=1024, stream=False) | |
txt = cdd + res.choices[0].text | |
return txt, txt | |
with gr.Blocks() as arch_room: | |
with gr.Row(): | |
gr.Markdown(f""" | |
## Arcanistry | |
*POOF* -- You walk in, to a cloudy room filled with heavy smoke. In the center of the room rests a waist-height table. Upon the table, you see a... You don't understand... It's dark and light and cold and warm but... As you extend your hand, you hear the voice travel up your arm and into your ears... | |
--- | |
""") | |
with gr.Row(): | |
cdd = gr.Code("""### Human | |
I require a Python script that serves a simple file server in Python over MongoDB. | |
### Wizard | |
Sure! Here's the script: | |
```python""", language="markdown") | |
with gr.Row(): | |
wzs = gr.Code(json.dumps({ | |
'token': '<|wizard|>', | |
'model': 'WizardLM/WizardCoder-Python-34B-V1.0', | |
'stop': ['###', '\n\n\n', '<|im_end|>', '<|im_start|>'] | |
})) | |
with gr.Row(): | |
rnd = gr.Markdown("") | |
with gr.Row(): | |
subm_prompt = gr.Button("Run Prompt") | |
subm_prompt.click(wizard_complete, inputs=[cdd, wzs], outputs=[cdd, rnd]) | |
with gr.TabbedInterface([ifc_imgprompt2text, c_ifc := gr.ChatInterface(chat, chatbot=chatbot, submit_btn=gr.Button(scale=1)), gr.ChatInterface(wizard_chat), arch_room], ["Prompt & Image 2 Text", "Chat w/ Llama 3 70b", "Chat w/ WizardLM 8x22B", "Arcanistry"]) as ifc: | |
shrd = gr.JSON(visible=False) | |
ifc.launch(share=False, debug=True, show_error=True) |