Spaces:
Sleeping
Sleeping
Update app.py (#6)
Browse files- Update app.py (735d33ea0ad6303d462d059ba812cbef76691f83)
app.py
CHANGED
|
@@ -1,124 +1,156 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
from datasets import load_dataset
|
| 3 |
-
from transformers import (
|
| 4 |
-
AutoTokenizer,
|
| 5 |
-
AutoModelForCausalLM,
|
| 6 |
-
Trainer,
|
| 7 |
-
TrainingArguments,
|
| 8 |
-
DataCollatorForLanguageModeling,
|
| 9 |
-
)
|
| 10 |
-
import torch
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# Map specialization → dataset + base model
|
| 14 |
-
SPECIALIZATIONS = {
|
| 15 |
-
"Coding Assistant": {
|
| 16 |
-
"dataset": "codeparrot/github-code",
|
| 17 |
-
"model": "EleutherAI/gpt-neo-125M",
|
| 18 |
-
},
|
| 19 |
-
"Cybersecurity Helper": {
|
| 20 |
-
"dataset": "wikitext",
|
| 21 |
-
"model": "distilgpt2", # placeholder dataset, replace with cybersecurity text later
|
| 22 |
-
},
|
| 23 |
-
"App/Web Developer": {
|
| 24 |
-
"dataset": "wikitext",
|
| 25 |
-
"model": "gpt2",
|
| 26 |
-
},
|
| 27 |
-
"General Problem Solver": {
|
| 28 |
-
"dataset": "wikitext",
|
| 29 |
-
"model": "gpt2",
|
| 30 |
-
},
|
| 31 |
-
}
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def train_model(specialization, epochs, lr):
|
| 35 |
-
try:
|
| 36 |
-
spec = SPECIALIZATIONS.get(specialization, SPECIALIZATIONS["General Problem Solver"])
|
| 37 |
-
|
| 38 |
-
dataset_name = spec["dataset"]
|
| 39 |
-
model_name = spec["model"]
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
dataset = load_dataset(dataset_name)
|
| 43 |
-
|
| 44 |
-
# Load tokenizer & model
|
| 45 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 46 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 47 |
|
| 48 |
-
def
|
| 49 |
-
return tokenizer(
|
| 50 |
-
|
| 51 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
| 52 |
-
|
| 53 |
-
# Data collator
|
| 54 |
-
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 55 |
|
| 56 |
-
|
| 57 |
training_args = TrainingArguments(
|
| 58 |
-
output_dir=
|
| 59 |
-
|
| 60 |
-
learning_rate=lr,
|
| 61 |
per_device_train_batch_size=2,
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
save_strategy="no",
|
| 66 |
-
logging_dir="./logs",
|
| 67 |
-
logging_steps=10,
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
trainer = Trainer(
|
| 71 |
-
model=model,
|
| 72 |
-
args=training_args,
|
| 73 |
-
train_dataset=tokenized_datasets["train"],
|
| 74 |
-
eval_dataset=tokenized_datasets["validation"],
|
| 75 |
-
tokenizer=tokenizer,
|
| 76 |
-
data_collator=data_collator,
|
| 77 |
)
|
| 78 |
|
|
|
|
| 79 |
trainer.train()
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
except Exception as e:
|
| 83 |
-
return f"
|
| 84 |
|
| 85 |
-
|
| 86 |
-
# Inference / Chat Function
|
| 87 |
-
def chat_fn(prompt, specialization):
|
| 88 |
try:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 95 |
-
outputs = model.generate(**inputs, max_length=
|
| 96 |
-
|
| 97 |
-
except Exception as e:
|
| 98 |
-
return f"❌ Chat error: {str(e)}"
|
| 99 |
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
| 121 |
chat_output = gr.Textbox(label="Response")
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
demo.launch(
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
import gradio as gr
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
| 6 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# ========= MEMORY MANAGEMENT =========
|
| 9 |
+
MEMORY_DIR = "memories"
|
| 10 |
+
MODEL_DIR = "models"
|
| 11 |
+
|
| 12 |
+
os.makedirs(MEMORY_DIR, exist_ok=True)
|
| 13 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
def get_memory_file(model_name):
|
| 16 |
+
safe_name = model_name.replace("/", "_")
|
| 17 |
+
return os.path.join(MEMORY_DIR, f"{safe_name}_memory.json")
|
| 18 |
+
|
| 19 |
+
def load_memory(model_name):
|
| 20 |
+
filepath = get_memory_file(model_name)
|
| 21 |
+
if os.path.exists(filepath):
|
| 22 |
+
with open(filepath, "r") as f:
|
| 23 |
+
return json.load(f)
|
| 24 |
+
return []
|
| 25 |
+
|
| 26 |
+
def save_memory(model_name, memory_data):
|
| 27 |
+
filepath = get_memory_file(model_name)
|
| 28 |
+
with open(filepath, "w") as f:
|
| 29 |
+
json.dump(memory_data, f, indent=2)
|
| 30 |
+
|
| 31 |
+
def append_memory(model_name, role, content):
|
| 32 |
+
memory = load_memory(model_name)
|
| 33 |
+
memory.append({
|
| 34 |
+
"timestamp": datetime.now().isoformat(),
|
| 35 |
+
"role": role,
|
| 36 |
+
"content": content
|
| 37 |
+
})
|
| 38 |
+
save_memory(model_name, memory)
|
| 39 |
+
|
| 40 |
+
def clear_memory(model_name):
|
| 41 |
+
filepath = get_memory_file(model_name)
|
| 42 |
+
if os.path.exists(filepath):
|
| 43 |
+
os.remove(filepath)
|
| 44 |
+
return f"Memory cleared for {model_name}."
|
| 45 |
+
|
| 46 |
+
def download_memory(model_name):
|
| 47 |
+
filepath = get_memory_file(model_name)
|
| 48 |
+
if os.path.exists(filepath):
|
| 49 |
+
return filepath
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
+
def upload_memory(model_name, file_obj):
|
| 53 |
+
if file_obj is None:
|
| 54 |
+
return "No file uploaded."
|
| 55 |
+
new_data = json.load(open(file_obj.name))
|
| 56 |
+
save_memory(model_name, new_data)
|
| 57 |
+
return f"Memory replaced for {model_name}."
|
| 58 |
+
|
| 59 |
+
def merge_memory(model_name, file_obj):
|
| 60 |
+
if file_obj is None:
|
| 61 |
+
return "No file uploaded."
|
| 62 |
+
current = load_memory(model_name)
|
| 63 |
+
new_data = json.load(open(file_obj.name))
|
| 64 |
+
merged = current + new_data
|
| 65 |
+
save_memory(model_name, merged)
|
| 66 |
+
return f"Memory merged for {model_name}."
|
| 67 |
+
|
| 68 |
+
# ========= MODEL MANAGEMENT =========
|
| 69 |
+
def train_model(model_name, dataset_name, epochs, output_dir):
|
| 70 |
+
try:
|
| 71 |
dataset = load_dataset(dataset_name)
|
|
|
|
|
|
|
| 72 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 73 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 74 |
|
| 75 |
+
def tokenize(batch):
|
| 76 |
+
return tokenizer(batch["text"], truncation=True, padding="max_length", max_length=128)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
dataset = dataset.map(tokenize, batched=True)
|
| 79 |
training_args = TrainingArguments(
|
| 80 |
+
output_dir=output_dir,
|
| 81 |
+
overwrite_output_dir=True,
|
|
|
|
| 82 |
per_device_train_batch_size=2,
|
| 83 |
+
num_train_epochs=int(epochs),
|
| 84 |
+
save_strategy="epoch",
|
| 85 |
+
logging_dir=f"{output_dir}/logs"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
)
|
| 87 |
|
| 88 |
+
trainer = Trainer(model=model, args=training_args, train_dataset=dataset["train"])
|
| 89 |
trainer.train()
|
| 90 |
+
model.save_pretrained(output_dir)
|
| 91 |
+
tokenizer.save_pretrained(output_dir)
|
| 92 |
+
return f"Training complete. Model saved to {output_dir}"
|
| 93 |
except Exception as e:
|
| 94 |
+
return f"Error: {str(e)}"
|
| 95 |
|
| 96 |
+
def chat_with_model(model_name, prompt):
|
|
|
|
|
|
|
| 97 |
try:
|
| 98 |
+
model_path = os.path.join(MODEL_DIR, model_name.replace("/", "_"))
|
| 99 |
+
if os.path.exists(model_path):
|
| 100 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 101 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 102 |
+
else:
|
| 103 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 104 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 105 |
|
| 106 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 107 |
+
outputs = model.generate(**inputs, max_length=256, do_sample=True, temperature=0.7)
|
| 108 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
append_memory(model_name, "user", prompt)
|
| 111 |
+
append_memory(model_name, "assistant", response)
|
| 112 |
|
| 113 |
+
return response
|
| 114 |
+
except Exception as e:
|
| 115 |
+
return f"Error: {str(e)}"
|
| 116 |
|
| 117 |
+
# ========= INTERFACE =========
|
| 118 |
+
with gr.Blocks() as demo:
|
| 119 |
+
gr.Markdown("# 🤖 My AI Model Builder\nTrain, fine-tune, test, and manage AI models with memory.")
|
| 120 |
+
|
| 121 |
+
with gr.Tab("Train Model"):
|
| 122 |
+
model_name = gr.Textbox(label="Base Model (Hugging Face Hub ID)", value="gpt2")
|
| 123 |
+
dataset_name = gr.Textbox(label="Dataset Name (Hugging Face Dataset ID)", value="wikitext")
|
| 124 |
+
epochs = gr.Number(label="Epochs", value=1, precision=0)
|
| 125 |
+
output_dir = gr.Textbox(label="Output Directory", value="models/custom_model")
|
| 126 |
+
train_btn = gr.Button("Train Model")
|
| 127 |
+
train_output = gr.Textbox(label="Training Status")
|
| 128 |
+
train_btn.click(train_model, inputs=[model_name, dataset_name, epochs, output_dir], outputs=train_output)
|
| 129 |
+
|
| 130 |
+
with gr.Tab("Test Models / Chat"):
|
| 131 |
+
chat_model = gr.Textbox(label="Model Name", value="gpt2")
|
| 132 |
+
user_prompt = gr.Textbox(label="Enter Prompt")
|
| 133 |
+
chat_btn = gr.Button("Chat")
|
| 134 |
chat_output = gr.Textbox(label="Response")
|
| 135 |
+
chat_btn.click(chat_with_model, inputs=[chat_model, user_prompt], outputs=chat_output)
|
| 136 |
+
|
| 137 |
+
with gr.Tab("Memory Management"):
|
| 138 |
+
mem_model = gr.Textbox(label="Model Name", value="gpt2")
|
| 139 |
+
view_btn = gr.Button("View Memory")
|
| 140 |
+
memory_output = gr.JSON(label="Memory Log")
|
| 141 |
+
view_btn.click(load_memory, inputs=[mem_model], outputs=memory_output)
|
| 142 |
+
|
| 143 |
+
with gr.Row():
|
| 144 |
+
dl_btn = gr.Button("Download Memory")
|
| 145 |
+
up_btn = gr.File(label="Upload Memory JSON")
|
| 146 |
+
merge_btn = gr.File(label="Merge Memory JSON")
|
| 147 |
+
|
| 148 |
+
dl_file = gr.File()
|
| 149 |
+
dl_btn.click(download_memory, inputs=[mem_model], outputs=dl_file)
|
| 150 |
+
up_btn.upload(upload_memory, inputs=[mem_model, up_btn], outputs=memory_output)
|
| 151 |
+
merge_btn.upload(merge_memory, inputs=[mem_model, merge_btn], outputs=memory_output)
|
| 152 |
+
|
| 153 |
+
clear_btn = gr.Button("Clear Memory")
|
| 154 |
+
clear_btn.click(clear_memory, inputs=[mem_model], outputs=memory_output)
|
| 155 |
|
| 156 |
+
demo.launch()
|