File size: 6,762 Bytes
c1997df ba294cc c1997df bd35ac7 ef4e241 ba294cc ef4e241 cd5d98f ef4e241 9b60cd8 19be099 cd5d98f ef4e241 19be099 ba294cc e649907 ef4e241 d4cee6d 28faf01 2add840 d4cee6d dc07e95 d4cee6d ba294cc 358fb0c ba294cc dc07e95 bd35ac7 a0c2f3c ba294cc 358fb0c 09373c9 dc07e95 ba294cc dc07e95 ba294cc a0c2f3c ba294cc a0c2f3c ba294cc 358fb0c 19be099 d4cee6d 358fb0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
from transformers import pipeline
import csv, tempfile
# ---------- Pipelines ----------
hate = pipeline(
"text-classification",
model="hossam87/bert-base-arabic-hate-speech",
tokenizer="hossam87/bert-base-arabic-hate-speech",
return_all_scores=False
)
dialect = pipeline(
"text-classification",
model="IbrahimAmin/marbertv2-arabic-written-dialect-classifier",
tokenizer="IbrahimAmin/marbertv2-arabic-written-dialect-classifier",
return_all_scores=False
)
# ---------- Inference ----------
def analyze(text: str):
try:
if not text or not text.strip():
return ("", "", "", "", "", "Please enter some Arabic text.")
h = hate(text)[0]
d = dialect(text)[0]
hate_label = h.get("label", "")
hate_conf = float(h.get("score", 0.0))
dial_label = d.get("label", "")
dial_conf = float(d.get("score", 0.0))
weights = {
"Neutral": 0.0,
"Offensive": 0.5,
"Sexism": 1.0,
"Racism": 1.0,
"Religious Discrimination": 1.0,
}
score = hate_conf * weights.get(hate_label, 0.0)
if hate_label != "Neutral" and weights.get(hate_label, 0.0) >= 1.0:
action = "๐จ Immediate Review โ Severe content detected. Escalate to moderators."
elif hate_label != "Neutral":
action = "โ ๏ธ Potentially Harmful โ Contains offensive content. Please review."
elif score >= 0.49:
action = "โ ๏ธ Borderline โ Review recommended."
else:
action = "โ
Safe โ No action needed."
return (hate_label, f"{hate_conf:.2f}", dial_label, f"{dial_conf:.2f}", f"{score:.2f}", action)
except Exception as e:
# keep the UI alive even if a model throws
return ("", "", "", "", "", f"Runtime error: {e}")
def analyze_file(file):
if file is None:
return [], None, "Please upload a .txt file."
try:
# Read uploaded file (utf-8 with fallback)
text = open(file.name, "r", encoding="utf-8", errors="ignore").read()
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
rows = []
headers = ["#", "Text (truncated)", "Hate Label", "Label Conf.",
"Dialect", "Dialect Conf.", "Threat Score", "Recommended Action"]
# Process up to 200 lines to keep UI responsive
for i, ln in enumerate(lines[:200], start=1):
hate_label, hate_conf, dial_label, dial_conf, score, action = analyze(ln)
rows.append([
i,
(ln[:80] + "โฆ") if len(ln) > 80 else ln,
hate_label, hate_conf, dial_label, dial_conf, score, action
])
# Write CSV to temp file for download
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
with open(tmp.name, "w", encoding="utf-8", newline="") as f:
writer = csv.writer(f)
writer.writerow(headers)
writer.writerows(rows)
status = f"Processed {len(rows)} lines."
return rows, tmp.name, status
except Exception as e:
return [], None, f"Error reading file: {e}"
# ---------- CSS (sidebar only) ----------
CSS = """
/* Only style the sidebar box; leave main area/theme untouched */
#sidebar-box {
border: 1px solid rgba(255,255,255,0.08);
border-radius: 10px;
padding: 20px;
}
"""
# ---------- UI ----------
with gr.Blocks(css=CSS) as demo:
with gr.Row(equal_height=True):
# Sidebar
with gr.Column(scale=1):
with gr.Group(elem_id="sidebar-box"):
gr.Markdown("""
## ๐ก๏ธ AI Watchdog: Arabic Content Safety Analyzer
**Purpose**
Analyze Arabic text for harmful or threatening language.
**Features**
- **Hate Speech Classification**
- **Dialect Detection**
- **Threat Severity Score**
- **Recommended Action** (rule-based)
**How to Use**
- Type text or
- Upload a .txt file (one entry per line)
### Dialect Abbreviation Guide
| Abbreviation | Meaning |
|--------------|---------|
| **MAGHREB** | North African dialects |
| **LEV** | Levantine dialects |
| **MSA** | Modern Standard Arabic |
| **GLF** | Gulf dialects |
| **EGY** | Egyptian Arabic |
""")
# Main area
with gr.Column(scale=3):
with gr.Tabs():
with gr.Tab("Text"):
gr.Markdown("### Enter Arabic Text for Analysis")
input_text = gr.Textbox(lines=4, placeholder="ุงูุชุจ ููุง...", label="Arabic Text")
out_hate = gr.Textbox(label="Hate Speech Label", interactive=False)
out_hate_conf = gr.Textbox(label="Label Confidence", interactive=False)
out_dialect = gr.Textbox(label="Dialect", interactive=False)
out_dialect_conf = gr.Textbox(label="Dialect Confidence", interactive=False)
out_score = gr.Textbox(label="Threat Score", interactive=False)
out_action = gr.Textbox(label="Recommended Action", interactive=False)
analyze_btn = gr.Button("Analyze", variant="primary")
analyze_btn.click(
fn=analyze,
inputs=input_text,
outputs=[out_hate, out_hate_conf, out_dialect, out_dialect_conf, out_score, out_action],
)
with gr.Tab("Upload"):
gr.Markdown("### Upload a .txt file (one entry per line)")
file_input = gr.File(file_types=[".txt"], label="Upload .txt")
table = gr.Dataframe(
headers=["#", "Text (truncated)", "Hate Label", "Label Conf.", "Dialect",
"Dialect Conf.", "Threat Score", "Recommended Action"],
row_count=1, col_count=8, wrap=True, interactive=False
)
download_csv = gr.File(label="Download Results (CSV)")
status = gr.Markdown()
run_file = gr.Button("Analyze File", variant="primary")
run_file.click(
fn=analyze_file,
inputs=file_input,
outputs=[table, download_csv, status]
)
if __name__ == "__main__":
demo.launch()
|