Spaces:
Sleeping
Sleeping
File size: 14,916 Bytes
4104208 d1b1252 c06e820 4104208 d1b1252 4104208 c06e820 a1c55ad d1b1252 c06e820 d1b1252 c06e820 d1b1252 c06e820 d1b1252 c06e820 a1c55ad d1b1252 a1c55ad d1b1252 c06e820 d1b1252 c06e820 d1b1252 c06e820 1522d52 d1b1252 c06e820 d1b1252 c06e820 d1b1252 a1c55ad d1b1252 1522d52 d1b1252 1522d52 d1b1252 c06e820 d1b1252 258745f d1b1252 c06e820 d1b1252 c06e820 d1b1252 c06e820 d1b1252 258745f d1b1252 1522d52 d1b1252 1522d52 d1b1252 1522d52 d1b1252 1522d52 d1b1252 258745f d1b1252 258745f d1b1252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import streamlit as st
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import random
import time
# Configure page
st.set_page_config(
page_title="Text-to-Quiz Generator",
page_icon="π§ ",
layout="wide"
)
# Load the model with caching
@st.cache_resource
def load_model():
try:
# Check if PyTorch is available
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
# Using a smaller, more efficient model that works well for question generation
model_name = "valhalla/t5-small-e2e-qg"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Move model to device
model = model.to(device)
return model, tokenizer, device
except Exception as e:
st.error(f"Error loading model: {str(e)}")
print(f"Error details: {str(e)}")
return None, None, None
# Custom CSS
def load_css():
st.markdown("""
<style>
.main {
padding: 2rem;
}
.question-box {
background-color: #f0f7ff;
padding: 1.5rem;
border-radius: 10px;
margin-bottom: 1rem;
border-left: 5px solid #4361ee;
}
.stButton button {
background-color: #4361ee;
color: white;
padding: 0.5rem 1rem;
border-radius: 5px;
border: none;
font-weight: bold;
}
.title-box {
padding: 1rem;
border-radius: 5px;
margin-bottom: 2rem;
text-align: center;
background: linear-gradient(90deg, #4361ee 0%, #3a0ca3 100%);
color: white;
}
.score-box {
font-size: 1.5rem;
padding: 1rem;
border-radius: 5px;
text-align: center;
font-weight: bold;
}
.feedback {
padding: 1rem;
border-radius: 5px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
# Function to generate questions from a passage
def generate_questions(model, tokenizer, device, text, num_questions=5):
try:
# Process text in chunks if it's too long
max_length = 512
chunks = []
if len(text) > max_length:
# Simple chunking based on sentences
sentences = text.split('. ')
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < max_length:
current_chunk += sentence + ". "
else:
chunks.append(current_chunk)
current_chunk = sentence + ". "
if current_chunk:
chunks.append(current_chunk)
else:
chunks = [text]
all_generated_texts = []
# Process each chunk
for chunk in chunks:
inputs = tokenizer(chunk, return_tensors="pt", max_length=512, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate with beam search for multiple diverse outputs
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_length=64,
num_beams=5,
num_return_sequences=min(3, num_questions), # Generate up to 3 questions per chunk
temperature=1.0,
diversity_penalty=1.0,
num_beam_groups=5,
early_stopping=True
)
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
all_generated_texts.extend(decoded_outputs)
# If we have enough questions, stop
if len(all_generated_texts) >= num_questions:
break
# Ensure we don't return more than num_questions
all_generated_texts = all_generated_texts[:num_questions]
# Process and extract questions and answers
questions_answers = []
for generated_text in all_generated_texts:
# Try to find question and answer
if "?" in generated_text:
parts = generated_text.split("?", 1)
if len(parts) > 1:
question = parts[0].strip() + "?"
answer = parts[1].strip()
# Clean up answer if it starts with common patterns
for prefix in ["answer:", "a:", " - "]:
if answer.lower().startswith(prefix):
answer = answer[len(prefix):].strip()
if question and answer and len(question) > 10:
questions_answers.append({
"question": question,
"answer": answer
})
return questions_answers
except Exception as e:
st.error(f"Error generating questions: {str(e)}")
print(f"Detailed error: {str(e)}")
return []
# Function to create quiz from generated Q&A pairs
def create_quiz(questions_answers, num_options=4):
quiz_items = []
# First filter out very short answers and duplicates
filtered_qa = []
seen_questions = set()
for qa in questions_answers:
q = qa["question"].strip()
a = qa["answer"].strip()
# Skip very short answers
if len(a) < 2 or len(q) < 10:
continue
# Skip duplicate questions
q_lower = q.lower()
if q_lower in seen_questions:
continue
seen_questions.add(q_lower)
filtered_qa.append({"question": q, "answer": a})
# Use the filtered Q&A pairs
all_answers = [qa["answer"] for qa in filtered_qa]
for i, qa in enumerate(filtered_qa):
correct_answer = qa["answer"]
# Create distractors by selecting random answers from other questions
other_answers = [a for a in all_answers if a != correct_answer]
if other_answers:
# Select random distractors
num_distractors = min(num_options - 1, len(other_answers))
distractors = random.sample(other_answers, num_distractors)
# Combine correct answer and distractors
options = [correct_answer] + distractors
random.shuffle(options)
quiz_items.append({
"id": i,
"question": qa["question"],
"correct_answer": correct_answer,
"options": options
})
return quiz_items
# Alternative question generation using simpler approach
def generate_questions_simple(text, num_questions=5):
try:
# Simple question generation for demonstration
# In a real app, you'd use a proper NLP model
# Extract sentences
sentences = text.split('.')
sentences = [s.strip() for s in sentences if len(s.strip()) > 20]
# Select random sentences to turn into questions
if len(sentences) < num_questions:
selected_sentences = sentences
else:
selected_sentences = random.sample(sentences, num_questions)
questions_answers = []
# Simple transformation of sentences into questions
for sentence in selected_sentences:
# Very simple question generation (not ideal but works as fallback)
words = sentence.split()
if len(words) < 5:
continue
# Extract key entities for answer
potential_answer = " ".join(words[-3:])
# Create question from beginning of sentence
question_words = words[:len(words)-3]
question = " ".join(question_words) + "?"
questions_answers.append({
"question": question,
"answer": potential_answer
})
return questions_answers
except Exception as e:
print(f"Error in simple question generation: {str(e)}")
return []
# Main app
def main():
load_css()
# App title
st.markdown('<div class="title-box"><h1>π§ Text-to-Quiz Generator</h1></div>', unsafe_allow_html=True)
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("### Enter a passage to generate quiz questions")
passage = st.text_area(
"Paste your text here:",
height=200,
placeholder="Enter a paragraph or article here to generate quiz questions..."
)
with col2:
st.markdown("### Settings")
num_questions = st.slider("Number of questions to generate", 3, 10, 5)
st.markdown("---")
st.markdown("""
**Tips for best results:**
- Use clear, factual content
- Include specific details
- Text length: 100-500 words works best
- Educational content works better than narrative
""")
# Generate Quiz button with automatic rerun logic
if "quiz_generated" not in st.session_state:
st.session_state.quiz_generated = False
if st.button("π§ Generate Quiz"):
if passage and len(passage) > 50:
# Loading the model (with the cached resource)
with st.spinner("Loading AI model..."):
model, tokenizer, device = load_model()
if model and tokenizer and device:
# Generate questions
with st.spinner("Generating questions..."):
# Add a small delay for UX
time.sleep(1)
questions_answers = generate_questions(model, tokenizer, device, passage, num_questions)
# If primary method fails, try fallback approach
if not questions_answers:
st.warning("Advanced question generation failed. Using simple approach instead.")
questions_answers = generate_questions_simple(passage, num_questions)
if questions_answers:
# Create quiz
quiz_items = create_quiz(questions_answers)
if quiz_items:
# Store in session state
st.session_state.quiz_items = quiz_items
st.session_state.user_answers = {}
st.session_state.quiz_submitted = False
st.session_state.show_explanations = False
st.session_state.quiz_generated = True
else:
st.error("Couldn't create valid quiz questions. Please try a different text or add more content.")
else:
st.error("Failed to generate questions. Please try a different passage.")
else:
st.error("Failed to load the question generation model. Please try again.")
else:
st.warning("Please enter a longer passage (at least 50 characters).")
# Display quiz if available in session state
if "quiz_items" in st.session_state and st.session_state.quiz_items:
st.markdown("---")
st.markdown("## Your Quiz")
quiz_items = st.session_state.quiz_items
# Create a form for the quiz
with st.form("quiz_form"):
for i, item in enumerate(quiz_items):
st.markdown(f'<div class="question-box"><h3>Question {i+1}</h3><p>{item["question"]}</p></div>', unsafe_allow_html=True)
key = f"question_{item['id']}"
st.session_state.user_answers[key] = st.radio(
"Select your answer:",
options=item["options"],
key=key
)
submit_button = st.form_submit_button("Submit Answers")
if submit_button:
st.session_state.quiz_submitted = True
# Show results if quiz was submitted
if st.session_state.quiz_submitted:
score = 0
st.markdown("## Quiz Results")
for i, item in enumerate(quiz_items):
key = f"question_{item['id']}"
user_answer = st.session_state.user_answers[key]
correct = user_answer == item["correct_answer"]
if correct:
score += 1
st.markdown(f'<div class="feedback" style="background-color: #d4edda; border-left: 5px solid #28a745;"><h4>Question {i+1}: Correct! β
</h4><p><strong>Your answer:</strong> {user_answer}</p></div>', unsafe_allow_html=True)
else:
st.markdown(f'<div class="feedback" style="background-color: #f8d7da; border-left: 5px solid #dc3545;"><h4>Question {i+1}: Incorrect β</h4><p><strong>Your answer:</strong> {user_answer}<br><strong>Correct answer:</strong> {item["correct_answer"]}</p></div>', unsafe_allow_html=True)
# Show score
percentage = (score / len(quiz_items)) * 100
if percentage >= 80:
color = "#28a745" # Green
message = "Excellent! π"
elif percentage >= 60:
color = "#17a2b8" # Blue
message = "Good job! π"
else:
color = "#ffc107" # Yellow
message = "Keep practicing! π"
st.markdown(f'<div class="score-box" style="background-color: {color}15; border-left: 5px solid {color};">{message}<br>Your Score: {score}/{len(quiz_items)} ({percentage:.1f}%)</div>', unsafe_allow_html=True)
# Restart button
if st.button("Generate Another Quiz"):
# Clear session state
for key in ["quiz_items", "user_answers", "quiz_submitted", "show_explanations", "quiz_generated"]:
if key in st.session_state:
del st.session_state[key]
# No need for rerun as page will refresh naturally with next event
if __name__ == "__main__":
main() |