File size: 8,968 Bytes
5b51c97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import asyncio
from functools import partial
from random import random
from types import SimpleNamespace
from typing import Any, Dict, List, Literal, Optional, Tuple, Union

from .eval_utils import async_eval_w_prompt

class Match:
    def __init__(
        self,
        A: SimpleNamespace = None,
        eval_model: str = "gpt-3.5-turbo-0125",
        B: Optional[SimpleNamespace] = None,
    ):
        """
        No need to carry outputs nor generation configs
            - if the outputs, and configurations are identifiable by modelA|Bname in the main system
        """

        self.A = A
        self.B = B

        self.eval_model: str = eval_model

        # results
        self.winner: Literal["A", "B"] = None
        self.score: float = None  # for abs_eval
        self.match_result = []
        self.match_metainfo_log = []
        # promptname, evalmodel, cost, tokens
        self.aggregated_result = None

    async def async_comp_eval(
        self,
        position_swap: bool = False,  # DEPRECATED (tested but not used anymore) --> refactor later
        comp_prompt: Literal["llmbar_brief", "llmbar"] = "llmbar",
    ) -> Tuple[str, List[Dict[str, float]]]:
        """
        returns:
            winner = "A"
            result= [{"A": 0.6, "B": 0.4}, {optional swap result: "A" will refer to the same model as the first one (prefer_2nd)}]
        """

        # sanity check:
        if (
            self.A.instruction != self.B.instruction
            or self.A.source != self.B.source
            or self.A.task != self.B.task
        ):
            raise ValueError(
                f"A and B required to have the same inst/src: \n\t{A=}, \n\t{B=}"
            )

        jobs = []

        evalf = partial(
            async_eval_w_prompt,
            prompt_obj=comp_prompt,
            evalmodel=self.eval_model,
            position_1st=self.A,
            position_2nd=self.B,
        )
        jobs.append(evalf())

        if position_swap:
            evalf_swap = partial(
                async_eval_w_prompt,
                prompt_obj=comp_prompt,
                evalmodel=self.eval_model,
                position_1st=self.B,  # B data into A position (swapped inputs)
                position_2nd=self.A,
            )
            jobs.append(evalf_swap())

        evaluation_results = await asyncio.gather(*jobs)

        # log match_result in granular
        match_result_, _tracking_obj, resp = evaluation_results[0]
        match_result = match_result_.copy()
        match_result["A"] = match_result.pop("prefer_1st", 0.0)
        match_result["B"] = match_result.pop("prefer_2nd", 0.0)
        match_result["output_text"] = (
            resp.choices[0].message.content if resp is not None else "",
        )
        self.match_result.append(match_result)

        if position_swap:
            match_result_swap_, _tracking_obj_swap, resp_swap = evaluation_results[-1]
            match_result_swap = match_result_swap_.copy()
            match_result_swap["A"] = match_result_swap.pop(
                "prefer_2nd", 0.0
            )  # changing the name
            match_result_swap["B"] = match_result_swap.pop("prefer_1st", 0.0)
            match_result_swap["output_text"] = (
                resp_swap.choices[0].message.content if resp_swap is not None else "",
            )
            self.match_result.append(match_result_swap)

        # # token / cost logging
        # cost: float = _tracking_obj.cost_in_usd(model=self.eval_model, silent=True)
        # tokens: Dict[str, int] = _tracking_obj.print_summary(silent=True)
        # self.log_metainfo(cost=cost, tokens=tokens, prompt_name=comp_prompt)

        if position_swap:
            # cost_swap = _tracking_obj_swap.cost_in_usd(
            #     model=self.eval_model, silent=True
            # )
            # tokens_swap = _tracking_obj_swap.print_summary(silent=True)
            # self.log_metainfo(
            #     cost=cost_swap,
            #     tokens=tokens_swap,
            #     prompt_name=comp_prompt,
            # )
            pass

        # aggregate and return
        self.aggregated_result = self.aggregate_match_result()
        self.winner = self.judge_winner()

        return self.winner, self.match_result

    async def async_dbg_eval(self, position_swap: bool = False):
        # default
        prefer_1st = random()
        prefer_2nd = 1 - prefer_1st
        await asyncio.sleep(random() * 2.0)  # 0 ~ 2์ดˆ ์‰ฌ๊ธฐ
        default_result = {
            "A": prefer_1st,
            "B": prefer_2nd,
            "model": "dbg",
            "prompt_name": "noprompt",
            "error": False,
            "exception_str": "",
        }
        self.match_result.append(default_result)
        # self.log_metainfo(cost=0.0, tokens=dict(), prompt_name="dbg")

        if position_swap:
            p = random()
            swap_result = {
                "A": p,
                "B": 1 - p,
                "model": "dbg",
                "prompt_name": "noprompt",
                "error": False,
                "exception_str": "",
            }
            self.match_result.append(swap_result)

            # self.log_metainfo(
            #     cost=0.0, tokens=dict(), prompt_name="dbg",
            # )

        self.aggregated_result = self.aggregate_match_result()
        self.winner = self.judge_winner()

        return self.winner, self.match_result

    def aggregate_match_result(self) -> Dict[str, float]:
        """
        input:
            [
                {A:0.4, B:0.5, (otherkeys)...}, # one or two results
            ]
        output:
            {
                A: float
                B: float
            }

        """
        if not self.match_result:
            raise ValueError("Match.comp_eval() need to be executed first!")

        aggregate = self.match_result[0].copy()
        if len(self.match_result) > 1:
            aggregate["A"] += self.match_result[1]["A"]
            aggregate["B"] += self.match_result[1]["B"]
            aggregate = {k: v / 2 for k, v in aggregate.items() if k in "AB"}

        error_exists = False
        for res in self.match_result:
            if res["error"]:
                error_exists = res["error"]
                break
        aggregate["error"] = error_exists

        return aggregate

    def judge_winner(self) -> Literal["A", "B"]:
        """
        based on self.aggregated_result, judge final winner

        input:
            {
                A:float
                B:float
                error:bool
            }
        output:
            Literal[A,B]
        """
        if self.aggregated_result is None:
            raise ValueError("Match.aggregate_math_result() need to be executed first!")

        if self.aggregated_result["error"]:
            winner = None
        elif self.aggregated_result["A"] == self.aggregated_result["B"]:
            winner = "A" if random() > 0.5 else "B"
        else:
            winner = (
                "A"
                if self.aggregated_result["A"] > self.aggregated_result["B"]
                else "B"
            )
        return winner

    # def log_metainfo(
    #     self,
    #     cost: float = 0.0,
    #     tokens: dict = None,
    #     prompt_name: str = None,
    #     position_swap: bool = False,
    # ):
    #     metainfo_d = {
    #         "cost": cost,
    #         "tokens": tokens,
    #         "eval_prompt_name": prompt_name,
    #         "model": self.eval_model,
    #         "position_swap": position_swap,
    #     }
    #     self.match_metainfo_log.append(metainfo_d)


if __name__ == "__main__":
    from pprint import pprint

    # unit test for match.py (class Match)
    row1 = {
        "model_id": "240413_dora",
        "task": "๋Š˜๋ ค์“ฐ๊ธฐ",
        "instruction": "์ž…๋ ฅ์œผ๋กœ ์ฃผ์–ด์ง„ ๊ธ€์˜ ๋‚ด์šฉ์„ ์œ ์ง€ํ•œ ์ฑ„, ์–ดํœ˜๋ฅผ ๋” ๊ธธ๊ฒŒ ๋ฐ”๊พธ๊ฑฐ๋‚˜ ์‚ฌ์†Œํ•œ ๋‚ด์šฉ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๋‹ค์‹œ ์จ์ฃผ์„ธ์š”.",
        "source": "์šฐ๋ฆฌ ๊ฒŒ์ž„์ด ๋ˆ์„ ์ž˜ ๋ฒˆ๋‹ค๋ฉด",
        "generated": "๋งŒ์•ฝ ์šฐ๋ฆฌ ๊ฒŒ์ž„์ด ์œ ์ €๋“ค์—๊ฒŒ ๋†’์€ ํ˜ธ์‘์„ ์–ป๊ณ  ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์ฆ๊ฑฐ์šด ์‹œ๊ฐ„์„ ๋ณด๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ์„œ๋น„์Šคํ•˜๊ณ  ์žˆ๋‹ค๋ฉด?",
    }
    row2 = {
        "model_id": "manual",
        "task": "๋Š˜๋ ค์“ฐ๊ธฐ",
        "instruction": "์ž…๋ ฅ์œผ๋กœ ์ฃผ์–ด์ง„ ๊ธ€์˜ ๋‚ด์šฉ์„ ์œ ์ง€ํ•œ ์ฑ„, ์–ดํœ˜๋ฅผ ๋” ๊ธธ๊ฒŒ ๋ฐ”๊พธ๊ฑฐ๋‚˜ ์‚ฌ์†Œํ•œ ๋‚ด์šฉ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๋‹ค์‹œ ์จ์ฃผ์„ธ์š”.",
        "source": "์šฐ๋ฆฌ ๊ฒŒ์ž„์ด ๋ˆ์„ ์ž˜ ๋ฒˆ๋‹ค๋ฉด",
        "generated": "๋งŒ์•ฝ ์šฐ๋ฆฌ ๊ฒŒ์ž„์ด ๋” ๋งŽ์€ ๋งค์ถœ์„ ๋‚ด๊ณ  ๋” ๋งŽ์€ ํ”Œ๋ ˆ์ด์–ด๋“ค์ด ์œ ์ž…๋˜๋Š” ์ƒํ™ฉ์ด๋ผ๋ฉด?",
    }
    A = SimpleNamespace(**row1)
    B = SimpleNamespace(**row2)
    m = Match(A=A, B=B, eval_model="gpt-3.5-turbo-1106")
    winner, result = m.async_comp_eval()
    score, result_ = m.async_abs_eval()
    print(winner)
    print(result)
    print(score)
    print(result_)
    pprint(m.match_metainfo_log)