Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,124 +1,173 @@
|
|
1 |
-
from flask import Flask, request, jsonify,
|
2 |
from PIL import Image
|
3 |
import base64
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import torch
|
7 |
from io import BytesIO
|
8 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import uuid
|
10 |
from transformers import AutoModelForImageSegmentation
|
|
|
11 |
from torchvision import transforms
|
12 |
-
import logging
|
13 |
-
import tempfile
|
14 |
-
from concurrent.futures import ThreadPoolExecutor
|
15 |
|
16 |
-
|
17 |
app = Flask(__name__)
|
18 |
|
19 |
# Configure logging
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
# GPU model setup
|
26 |
-
birefnet = None
|
27 |
-
transform_image = None
|
28 |
-
model_loaded = threading.Event()
|
29 |
|
30 |
def load_model():
|
31 |
-
global
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def decode_image_from_base64(image_data):
|
47 |
image_data = base64.b64decode(image_data)
|
48 |
image = Image.open(BytesIO(image_data)).convert("RGB")
|
49 |
return image
|
50 |
|
|
|
51 |
def encode_image_to_base64(image):
|
52 |
buffered = BytesIO()
|
53 |
-
image.save(buffered, format="PNG")
|
54 |
-
return base64.b64encode(buffered.getvalue()).decode(
|
55 |
-
|
56 |
-
def
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
torch.cuda.empty_cache()
|
63 |
-
torch.cuda.ipc_collect()
|
64 |
-
|
65 |
-
async def process_image(image):
|
66 |
-
"""Process the image asynchronously, including background removal."""
|
67 |
-
global birefnet, transform_image
|
68 |
-
|
69 |
-
# Ensure the model is loaded
|
70 |
-
load_model()
|
71 |
-
|
72 |
-
# Convert image to tensor
|
73 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
74 |
-
|
75 |
-
# Run inference
|
76 |
with torch.no_grad():
|
77 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
78 |
-
|
79 |
-
# Generate mask and apply to original image
|
80 |
pred = preds[0].squeeze()
|
81 |
pred_pil = transforms.ToPILImage()(pred)
|
82 |
-
mask = pred_pil.resize(
|
83 |
image.putalpha(mask)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
@app.route('/api/detect', methods=['POST'])
|
92 |
-
|
93 |
try:
|
94 |
data = request.json
|
95 |
-
image_base64 = data
|
96 |
-
|
97 |
-
if not image_base64:
|
98 |
-
return jsonify({"error": "No image provided."}), 400
|
99 |
-
|
100 |
-
# Decode the image
|
101 |
image = decode_image_from_base64(image_base64)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
processed_image = await loop.run_in_executor(executor, asyncio.run, process_image(image))
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
return jsonify({"image_url": f"/api/get_image/{uuid.uuid4()}", "path": output_path})
|
111 |
|
|
|
112 |
except Exception as e:
|
113 |
-
logging.error(f"Error
|
114 |
-
return jsonify({
|
115 |
-
|
|
|
116 |
@app.route('/api/get_image/<image_id>', methods=['GET'])
|
117 |
def get_image(image_id):
|
|
|
|
|
|
|
|
|
118 |
try:
|
119 |
-
return send_file(
|
120 |
except FileNotFoundError:
|
121 |
-
return jsonify({
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
-
app.run(debug=True, host="0.0.0.0", port=7860)
|
|
|
1 |
+
from flask import Flask, request, jsonify ,send_file
|
2 |
from PIL import Image
|
3 |
import base64
|
4 |
+
import spaces
|
5 |
+
from loadimg import load_img
|
|
|
6 |
from io import BytesIO
|
7 |
import numpy as np
|
8 |
+
import insightface
|
9 |
+
import onnxruntime as ort
|
10 |
+
import huggingface_hub
|
11 |
+
from SegCloth import segment_clothing
|
12 |
+
from transparent_background import Remover
|
13 |
+
import threading
|
14 |
+
import logging
|
15 |
import uuid
|
16 |
from transformers import AutoModelForImageSegmentation
|
17 |
+
import torch
|
18 |
from torchvision import transforms
|
|
|
|
|
|
|
19 |
|
20 |
+
|
21 |
app = Flask(__name__)
|
22 |
|
23 |
# Configure logging
|
24 |
logging.basicConfig(level=logging.INFO)
|
25 |
|
26 |
+
# Load the model lazily
|
27 |
+
model = None
|
28 |
+
detector = None
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def load_model():
|
31 |
+
global model, detector
|
32 |
+
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
33 |
+
options = ort.SessionOptions()
|
34 |
+
options.intra_op_num_threads = 8
|
35 |
+
options.inter_op_num_threads = 8
|
36 |
+
session = ort.InferenceSession(
|
37 |
+
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
|
38 |
+
)
|
39 |
+
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
|
40 |
+
model.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
41 |
+
detector = model
|
42 |
+
logging.info("Model loaded successfully.")
|
43 |
+
|
44 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
45 |
+
|
46 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
47 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
48 |
+
)
|
49 |
+
birefnet.to("cuda")
|
50 |
+
transform_image = transforms.Compose(
|
51 |
+
[
|
52 |
+
transforms.Resize((1024, 1024)),
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def save_image(img):
|
61 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
62 |
+
img.save(unique_name)
|
63 |
+
return unique_name
|
64 |
+
|
65 |
+
# Function to decode a base64 image to PIL.Image.Image
|
66 |
def decode_image_from_base64(image_data):
|
67 |
image_data = base64.b64decode(image_data)
|
68 |
image = Image.open(BytesIO(image_data)).convert("RGB")
|
69 |
return image
|
70 |
|
71 |
+
# Function to encode a PIL image to base64
|
72 |
def encode_image_to_base64(image):
|
73 |
buffered = BytesIO()
|
74 |
+
image.save(buffered, format="PNG") # Use PNG for compatibility with RGBA
|
75 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
76 |
+
@spaces.GPU
|
77 |
+
def rm_background(image):
|
78 |
+
im = load_img(image, output_type="pil")
|
79 |
+
im = im.convert("RGB")
|
80 |
+
image_size = im.size
|
81 |
+
origin = im.copy()
|
82 |
+
image = load_img(im)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
84 |
+
# Prediction
|
|
|
85 |
with torch.no_grad():
|
86 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
|
|
|
87 |
pred = preds[0].squeeze()
|
88 |
pred_pil = transforms.ToPILImage()(pred)
|
89 |
+
mask = pred_pil.resize(image_size)
|
90 |
image.putalpha(mask)
|
91 |
+
return (image)
|
92 |
+
|
93 |
+
@spaces.GPU
|
94 |
+
def remove_background(image):
|
95 |
+
remover = Remover()
|
96 |
+
if isinstance(image, Image.Image):
|
97 |
+
output = remover.process(image)
|
98 |
+
elif isinstance(image, np.ndarray):
|
99 |
+
image_pil = Image.fromarray(image)
|
100 |
+
output = remover.process(image_pil)
|
101 |
+
else:
|
102 |
+
raise TypeError("Unsupported image type")
|
103 |
+
return output
|
104 |
+
|
105 |
+
def detect_and_segment_persons(image, clothes):
|
106 |
+
img = np.array(image)
|
107 |
+
img = img[:, :, ::-1] # RGB -> BGR
|
108 |
+
|
109 |
+
if detector is None:
|
110 |
+
load_model() # Ensure the model is loaded
|
111 |
+
|
112 |
+
bboxes, kpss = detector.detect(img)
|
113 |
+
if bboxes.shape[0] == 0:
|
114 |
+
return [save_image(rm_background(image))]
|
115 |
+
|
116 |
+
height, width, _ = img.shape
|
117 |
+
bboxes = np.round(bboxes[:, :4]).astype(int)
|
118 |
+
bboxes[:, 0] = np.clip(bboxes[:, 0], 0, width)
|
119 |
+
bboxes[:, 1] = np.clip(bboxes[:, 1], 0, height)
|
120 |
+
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width)
|
121 |
+
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height)
|
122 |
+
|
123 |
+
all_segmented_images = []
|
124 |
+
for i in range(bboxes.shape[0]):
|
125 |
+
bbox = bboxes[i]
|
126 |
+
x1, y1, x2, y2 = bbox
|
127 |
+
person_img = img[y1:y2, x1:x2]
|
128 |
+
pil_img = Image.fromarray(person_img[:, :, ::-1])
|
129 |
+
|
130 |
+
img_rm_background = rm_background(pil_img)
|
131 |
+
segmented_result = segment_clothing(img_rm_background, clothes)
|
132 |
+
image_paths = [save_image(img) for img in segmented_result]
|
133 |
+
print(image_paths)
|
134 |
+
all_segmented_images.extend(image_paths)
|
135 |
+
|
136 |
+
return all_segmented_images
|
137 |
+
|
138 |
+
@app.route('/', methods=['GET'])
|
139 |
+
def welcome():
|
140 |
+
return "Welcome to Clothing Segmentation API"
|
141 |
|
142 |
@app.route('/api/detect', methods=['POST'])
|
143 |
+
def detect():
|
144 |
try:
|
145 |
data = request.json
|
146 |
+
image_base64 = data['image']
|
|
|
|
|
|
|
|
|
|
|
147 |
image = decode_image_from_base64(image_base64)
|
148 |
|
149 |
+
clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"]
|
150 |
+
|
|
|
151 |
|
152 |
+
result = detect_and_segment_persons(image, clothes)
|
153 |
+
|
|
|
|
|
154 |
|
155 |
+
return jsonify({'images': result})
|
156 |
except Exception as e:
|
157 |
+
logging.error(f"Error occurred: {e}")
|
158 |
+
return jsonify({'error': str(e)}), 500
|
159 |
+
|
160 |
+
# Route pour récupérer l'image générée
|
161 |
@app.route('/api/get_image/<image_id>', methods=['GET'])
|
162 |
def get_image(image_id):
|
163 |
+
# Construire le chemin complet de l'image
|
164 |
+
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
|
165 |
+
|
166 |
+
# Renvoyer l'image
|
167 |
try:
|
168 |
+
return send_file(image_path, mimetype='image/png')
|
169 |
except FileNotFoundError:
|
170 |
+
return jsonify({'error': 'Image not found'}), 404
|
171 |
|
172 |
if __name__ == "__main__":
|
173 |
+
app.run(debug=True, host="0.0.0.0", port=7860)
|