Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,203 +1,204 @@
|
|
1 |
-
import os
|
2 |
-
import io
|
3 |
-
import time
|
4 |
-
import base64
|
5 |
-
import uuid
|
6 |
-
import PIL.Image
|
7 |
-
from flask import Flask, render_template, request, jsonify
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
|
10 |
-
# Google Cloud & GenAI specific imports
|
11 |
-
from google.cloud import storage
|
12 |
-
from google.api_core import exceptions as google_exceptions
|
13 |
-
from google import genai
|
14 |
-
from google.genai import types
|
15 |
-
|
16 |
-
# --- Configuration & Initialization ---
|
17 |
-
load_dotenv('.env')
|
18 |
-
|
19 |
-
app = Flask(__name__)
|
20 |
-
|
21 |
-
LOCAL_IMAGE_DIR = os.path.join('static', 'generated_images')
|
22 |
-
os.makedirs(LOCAL_IMAGE_DIR, exist_ok=True)
|
23 |
-
|
24 |
-
# Gemini Image Generation Client (using your existing setup)
|
25 |
-
API_KEY = os.environ.get("GOOGLE_API_KEY")
|
26 |
-
MODEL_ID_IMAGE = 'gemini-2.0-flash-exp-image-generation'
|
27 |
-
|
28 |
-
# Veo Video Generation Client (NEW)
|
29 |
-
PROJECT_ID = os.environ.get("PROJECT_ID")
|
30 |
-
LOCATION = os.environ.get("GOOGLE_CLOUD_REGION", "us-central1")
|
31 |
-
GCS_BUCKET_NAME = os.environ.get("GCS_BUCKET_NAME")
|
32 |
-
MODEL_ID_VIDEO = "veo-3.0-generate-preview" # Your Veo model ID
|
33 |
-
|
34 |
-
if not all([API_KEY, PROJECT_ID, GCS_BUCKET_NAME, LOCATION]):
|
35 |
-
raise RuntimeError("Missing required environment variables. Check your .env file.")
|
36 |
-
|
37 |
-
# Initialize clients
|
38 |
-
try:
|
39 |
-
# Client for Gemini Image Generation
|
40 |
-
gemini_image_client = genai.Client(api_key=API_KEY)
|
41 |
-
print(f"Gemini Image Client initialized successfully for model: {MODEL_ID_IMAGE}")
|
42 |
-
|
43 |
-
# Client for Veo Video Generation (Vertex AI)
|
44 |
-
veo_video_client = genai.Client(vertexai=True, project=PROJECT_ID, location=LOCATION)
|
45 |
-
print(f"Veo Video Client (Vertex AI) initialized successfully for project: {PROJECT_ID}")
|
46 |
-
|
47 |
-
# Client for Google Cloud Storage
|
48 |
-
gcs_client = storage.Client(project=PROJECT_ID)
|
49 |
-
print("Google Cloud Storage Client initialized successfully.")
|
50 |
-
|
51 |
-
except Exception as e:
|
52 |
-
print(f"Error during client initialization: {e}")
|
53 |
-
gemini_image_client = veo_video_client = gcs_client = None
|
54 |
-
|
55 |
-
|
56 |
-
# --- Helper Function to Upload to GCS (NEW) ---
|
57 |
-
def upload_bytes_to_gcs(image_bytes: bytes, bucket_name: str, destination_blob_name: str) -> str:
|
58 |
-
"""Uploads image bytes to GCS and returns the GCS URI."""
|
59 |
-
if not gcs_client:
|
60 |
-
raise ConnectionError("GCS client is not initialized.")
|
61 |
-
|
62 |
-
bucket = gcs_client.bucket(bucket_name)
|
63 |
-
blob = bucket.blob(destination_blob_name)
|
64 |
-
blob.upload_from_string(image_bytes, content_type='image/png')
|
65 |
-
|
66 |
-
gcs_uri = f"gs://{bucket_name}/{destination_blob_name}"
|
67 |
-
print(f"Image successfully uploaded to {gcs_uri}")
|
68 |
-
return gcs_uri
|
69 |
-
|
70 |
-
|
71 |
-
# --- Main Routes ---
|
72 |
-
@app.route('/')
|
73 |
-
def index():
|
74 |
-
"""Renders the main HTML page."""
|
75 |
-
return render_template('index.html')
|
76 |
-
|
77 |
-
@app.route('/generate', methods=['POST'])
|
78 |
-
def generate_video_from_sketch():
|
79 |
-
"""Full pipeline: sketch -> image -> video."""
|
80 |
-
if not all([gemini_image_client
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
default_prompt = "
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
#
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
203 |
app.run(debug=True, host='0.0.0.0', port=5000)
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import time
|
4 |
+
import base64
|
5 |
+
import uuid
|
6 |
+
import PIL.Image
|
7 |
+
from flask import Flask, render_template, request, jsonify
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
|
10 |
+
# Google Cloud & GenAI specific imports
|
11 |
+
from google.cloud import storage
|
12 |
+
from google.api_core import exceptions as google_exceptions
|
13 |
+
from google import genai
|
14 |
+
from google.genai import types
|
15 |
+
|
16 |
+
# --- Configuration & Initialization ---
|
17 |
+
# load_dotenv('.env')
|
18 |
+
|
19 |
+
app = Flask(__name__)
|
20 |
+
|
21 |
+
LOCAL_IMAGE_DIR = os.path.join('static', 'generated_images')
|
22 |
+
os.makedirs(LOCAL_IMAGE_DIR, exist_ok=True)
|
23 |
+
|
24 |
+
# Gemini Image Generation Client (using your existing setup)
|
25 |
+
API_KEY = os.environ.get("GOOGLE_API_KEY")
|
26 |
+
MODEL_ID_IMAGE = 'gemini-2.0-flash-exp-image-generation'
|
27 |
+
|
28 |
+
# Veo Video Generation Client (NEW)
|
29 |
+
PROJECT_ID = os.environ.get("PROJECT_ID")
|
30 |
+
LOCATION = os.environ.get("GOOGLE_CLOUD_REGION", "us-central1")
|
31 |
+
GCS_BUCKET_NAME = os.environ.get("GCS_BUCKET_NAME")
|
32 |
+
MODEL_ID_VIDEO = "veo-3.0-generate-preview" # Your Veo model ID
|
33 |
+
|
34 |
+
if not all([API_KEY, PROJECT_ID, GCS_BUCKET_NAME, LOCATION]):
|
35 |
+
raise RuntimeError("Missing required environment variables. Check your .env file.")
|
36 |
+
|
37 |
+
# Initialize clients
|
38 |
+
try:
|
39 |
+
# Client for Gemini Image Generation
|
40 |
+
gemini_image_client = genai.Client(api_key=API_KEY)
|
41 |
+
print(f"Gemini Image Client initialized successfully for model: {MODEL_ID_IMAGE}")
|
42 |
+
|
43 |
+
# Client for Veo Video Generation (Vertex AI)
|
44 |
+
veo_video_client = genai.Client(vertexai=True, project=PROJECT_ID, location=LOCATION)
|
45 |
+
print(f"Veo Video Client (Vertex AI) initialized successfully for project: {PROJECT_ID}")
|
46 |
+
|
47 |
+
# Client for Google Cloud Storage
|
48 |
+
gcs_client = storage.Client(project=PROJECT_ID)
|
49 |
+
print("Google Cloud Storage Client initialized successfully.")
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error during client initialization: {e}")
|
53 |
+
gemini_image_client = veo_video_client = gcs_client = None
|
54 |
+
|
55 |
+
|
56 |
+
# --- Helper Function to Upload to GCS (NEW) ---
|
57 |
+
def upload_bytes_to_gcs(image_bytes: bytes, bucket_name: str, destination_blob_name: str) -> str:
|
58 |
+
"""Uploads image bytes to GCS and returns the GCS URI."""
|
59 |
+
if not gcs_client:
|
60 |
+
raise ConnectionError("GCS client is not initialized.")
|
61 |
+
|
62 |
+
bucket = gcs_client.bucket(bucket_name)
|
63 |
+
blob = bucket.blob(destination_blob_name)
|
64 |
+
blob.upload_from_string(image_bytes, content_type='image/png')
|
65 |
+
|
66 |
+
gcs_uri = f"gs://{bucket_name}/{destination_blob_name}"
|
67 |
+
print(f"Image successfully uploaded to {gcs_uri}")
|
68 |
+
return gcs_uri
|
69 |
+
|
70 |
+
|
71 |
+
# --- Main Routes ---
|
72 |
+
@app.route('/')
|
73 |
+
def index():
|
74 |
+
"""Renders the main HTML page."""
|
75 |
+
return render_template('index.html')
|
76 |
+
|
77 |
+
@app.route('/generate', methods=['POST'])
|
78 |
+
def generate_video_from_sketch():
|
79 |
+
"""Full pipeline: sketch -> image -> video."""
|
80 |
+
if not all([gemini_image_client]):
|
81 |
+
# if not all([gemini_image_client, veo_video_client, gcs_client]):
|
82 |
+
return jsonify({"error": "A server-side client is not initialized. Check server logs."}), 500
|
83 |
+
|
84 |
+
if not request.json or 'image_data' not in request.json:
|
85 |
+
return jsonify({"error": "Missing image_data in request"}), 400
|
86 |
+
|
87 |
+
base64_image_data = request.json['image_data']
|
88 |
+
user_prompt = request.json.get('prompt', '').strip()
|
89 |
+
|
90 |
+
# --- Step 1: Generate Image with Gemini ---
|
91 |
+
try:
|
92 |
+
print("--- Step 1: Generating image from sketch with Gemini ---")
|
93 |
+
if ',' in base64_image_data:
|
94 |
+
base64_data = base64_image_data.split(',', 1)[1]
|
95 |
+
else:
|
96 |
+
base64_data = base64_image_data
|
97 |
+
|
98 |
+
image_bytes = base64.b64decode(base64_data)
|
99 |
+
sketch_pil_image = PIL.Image.open(io.BytesIO(image_bytes))
|
100 |
+
|
101 |
+
# default_prompt = "Create a photorealistic image based on this sketch. Focus on realistic lighting, textures, and shadows to make it look like a photograph taken with a professional DSLR camera."
|
102 |
+
default_prompt = "Convert this sketch into a photorealistic image as if it were taken from a real DSLR camera. The elements and objects should look real."
|
103 |
+
#prompt_text = f"{default_prompt} {user_prompt}" if user_prompt else default_prompt
|
104 |
+
|
105 |
+
response = gemini_image_client.models.generate_content(
|
106 |
+
model=MODEL_ID_IMAGE,
|
107 |
+
contents=[default_prompt, sketch_pil_image],
|
108 |
+
config=types.GenerateContentConfig(response_modalities=['TEXT', 'IMAGE'])
|
109 |
+
)
|
110 |
+
|
111 |
+
if not response.candidates:
|
112 |
+
raise ValueError("Gemini image generation returned no candidates.")
|
113 |
+
|
114 |
+
generated_image_bytes = None
|
115 |
+
for part in response.candidates[0].content.parts:
|
116 |
+
if part.inline_data and part.inline_data.mime_type.startswith('image/'):
|
117 |
+
generated_image_bytes = part.inline_data.data
|
118 |
+
break
|
119 |
+
|
120 |
+
if not generated_image_bytes:
|
121 |
+
raise ValueError("Gemini did not return an image in the response.")
|
122 |
+
|
123 |
+
print("Image generated successfully.")
|
124 |
+
|
125 |
+
try:
|
126 |
+
# Use a unique filename to prevent overwrites
|
127 |
+
local_filename = f"generated-image-{uuid.uuid4()}.png"
|
128 |
+
local_image_path = os.path.join(LOCAL_IMAGE_DIR, local_filename)
|
129 |
+
# Write the bytes to a file in binary mode ('wb')
|
130 |
+
with open(local_image_path, "wb") as f:
|
131 |
+
f.write(generated_image_bytes)
|
132 |
+
print(f"Image also saved locally to: {local_image_path}")
|
133 |
+
except Exception as e:
|
134 |
+
# This is not a critical error, so we just print a warning and continue.
|
135 |
+
print(f"[Warning] Could not save image locally: {e}")
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
print(f"Error during Gemini image generation: {e}")
|
139 |
+
return jsonify({"error": f"Failed to generate image: {e}"}), 500
|
140 |
+
|
141 |
+
# --- Step 2 & 3: Upload Image to GCS and Generate Video with Veo ---
|
142 |
+
try:
|
143 |
+
print("\n--- Step 2: Uploading generated image to GCS ---")
|
144 |
+
unique_id = uuid.uuid4()
|
145 |
+
image_blob_name = f"images/generated-image-{unique_id}.png"
|
146 |
+
output_gcs_prefix = f"gs://{GCS_BUCKET_NAME}/videos/" # Folder for video outputs
|
147 |
+
|
148 |
+
image_gcs_uri = upload_bytes_to_gcs(generated_image_bytes, GCS_BUCKET_NAME, image_blob_name)
|
149 |
+
|
150 |
+
print("\n--- Step 3: Calling Veo to generate video ---")
|
151 |
+
default_video_prompt = "Animate this image. Add subtle, cinematic motion."
|
152 |
+
video_prompt = f"{user_prompt}" if user_prompt else default_video_prompt
|
153 |
+
print(video_prompt)
|
154 |
+
|
155 |
+
operation = veo_video_client.models.generate_videos(
|
156 |
+
model=MODEL_ID_VIDEO,
|
157 |
+
prompt=video_prompt,
|
158 |
+
image=types.Image(gcs_uri=image_gcs_uri, mime_type="image/png"),
|
159 |
+
config=types.GenerateVideosConfig(
|
160 |
+
aspect_ratio="16:9",
|
161 |
+
output_gcs_uri=output_gcs_prefix,
|
162 |
+
duration_seconds=8,
|
163 |
+
person_generation="allow_adult",
|
164 |
+
enhance_prompt=True,
|
165 |
+
generate_audio=True, # Keep it simple for now
|
166 |
+
),
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
# WARNING: This is a synchronous poll, which will block the server thread.
|
171 |
+
# For production, consider an asynchronous pattern (e.g., websockets or long polling).
|
172 |
+
timeout_seconds = 300 # 5 minutes
|
173 |
+
start_time = time.time()
|
174 |
+
while not operation.done:
|
175 |
+
if time.time() - start_time > timeout_seconds:
|
176 |
+
raise TimeoutError("Video generation timed out.")
|
177 |
+
time.sleep(15)
|
178 |
+
# You must get the operation object again to refresh its status
|
179 |
+
operation = veo_video_client.operations.get(operation)
|
180 |
+
print(operation)
|
181 |
+
|
182 |
+
print("Video generation operation complete.")
|
183 |
+
|
184 |
+
if not operation.response or not operation.result.generated_videos:
|
185 |
+
raise ValueError("Veo operation completed but returned no video.")
|
186 |
+
|
187 |
+
video_gcs_uri = operation.result.generated_videos[0].video.uri
|
188 |
+
print(f"Video saved to GCS at: {video_gcs_uri}")
|
189 |
+
|
190 |
+
# Convert gs:// URI to public https:// URL
|
191 |
+
video_blob_name = video_gcs_uri.replace(f"gs://{GCS_BUCKET_NAME}/", "")
|
192 |
+
|
193 |
+
public_video_url = f"https://storage.googleapis.com/{GCS_BUCKET_NAME}/{video_blob_name}"
|
194 |
+
print(f"Video generated successfully. Public URL: {public_video_url}")
|
195 |
+
|
196 |
+
return jsonify({"generated_video_url": public_video_url})
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
print(f"An error occurred during video generation: {e}")
|
200 |
+
return jsonify({"error": f"Failed to generate video: {e}"}), 500
|
201 |
+
|
202 |
+
|
203 |
+
if __name__ == '__main__':
|
204 |
app.run(debug=True, host='0.0.0.0', port=5000)
|