EmotionDetection / main.py
MahmoudNasser's picture
Update main.py
7110d08
raw
history blame
9.38 kB
import tensorflow as tf
import numpy as np
import pandas as pd
import swifter
import json
import re
import requests
import time
from keras.preprocessing.text import Tokenizer
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
# from keras.optimizers.optimizer_v2.rmsprop import RMSProp
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Conv1D, Embedding, MaxPooling1D, GlobalMaxPooling1D, GlobalAveragePooling1D, SpatialDropout1D, LSTM, Dropout, SimpleRNN, Bidirectional, Attention, Activation, GRU, TextVectorization, Input
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import arabicstopwords.arabicstopwords as stp
from nltk.stem.isri import ISRIStemmer
from pyarabic.araby import strip_tashkeel, strip_tatweel
from huggingface_hub import from_pretrained_keras
from collections import Counter
from fastapi import FastAPI, Request, HTTPException
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import threading
# Import the Firebase Admin SDK
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
from transformers import BertTokenizer, AutoModelForSeq2SeqLM, pipeline
from arabert.preprocess import ArabertPreprocessor
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
import smtplib
from email.mime.text import MIMEText
import os
import math
import random
import threading
import Classes
# Firebase ininlaziton
cred = credentials.Certificate(
"text-to-emotions-firebase-adminsdk-8isbn-dffbdf01e8.json")
firebase_admin.initialize_app(cred)
db = firestore.client()
# Model summury
model_name="abdalrahmanshahrour/auto-arabic-summarization"
preprocessor = ArabertPreprocessor(model_name="")
tokenizer = AutoTokenizer.from_pretrained(model_name)
modelsummary =AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipeline1 = pipeline("text2text-generation",model=modelsummary,tokenizer=tokenizer)
# Model inilization
isristemmer = ISRIStemmer()
model = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-73P')
# dictinarties for email OTP
emailOTP={}
def stemming(txt):
return isristemmer.stem(txt)
def remove_singleCharacter(text):
text_tokenized = ar.tokenize(text)
clean_txt = ''
for word in text_tokenized:
if len(word) != 1:
clean_txt = clean_txt + word + ' '
return clean_txt[:-1]
# remove_punctuations
def remove_punctuations(text):
punc = '''()-[]{};:'"\,<>./@#$%^&*،؛_~'''
arabic_punctuations = '''`÷×؛_ـ،/:".,'~¦+|”…“–ـ=﴾﴿ ﹱ ﹹ ⸀˓• ב'''
punctuations_list = punc + arabic_punctuations
for x in punctuations_list:
text = text.replace(x, ' ')
return text
def normalize_text(txt):
txt = strip_tashkeel(txt)
txt = strip_tatweel(txt)
txt = ''.join(txt[i] for i in range(len(txt)) if i ==
0 or txt[i-1] != txt[i]) # remove repeated characters
return txt
def remove_stopwords(txt, path="stopword.txt"):
text_tokenized = txt.split(' ')
clean_txt = ''
# useful_words=[]
# filtered_sentence=" "
arabic_stop_words_file = open(path, 'r', encoding='utf-8')
arabic_stop_words = arabic_stop_words_file.read().split('\n')
for word in text_tokenized:
if word not in arabic_stop_words:
clean_txt = clean_txt + word + ' '
return clean_txt[:-1]
def Remove_unwanted(text):
# removing the extra spacing and links
text = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', text, flags=re.MULTILINE)
text = re.sub(r'^http?:\/\/.*[\r\n]*', ' ', text, flags=re.MULTILINE)
text = re.sub(r"http\S+", " ", text)
text = re.sub(r"https\S+", " ", text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[a-zA-Z]+', ' ', text)
text = re.sub(r"^\s+|\s+$", "", text)
text = re.sub(r"(\s\d+)", " ", text)
text = re.sub(r"$\d+\W+|\b\d+\b|\W+\d+$", " ", text)
text = re.sub(r"\d+", " ", text)
text = re.sub(r'[إأٱآا]', 'ا', text)
text = re.sub(r'ى', '[ي]', text)
text = re.sub(r'ء', '[ؤئ]', text)
text = re.sub(r' +', ' ', text)
return text
def txt_preprocess(text):
text = normalize_text(text)
text = stemming(text)
text = remove_stopwords(text)
text = remove_punctuations(text)
text = Remove_unwanted(text)
return text
def see_if_thereupdates():
f = open("updates.txt", "r")
return f.readline()
def getmodel():
m = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-72P')
return m
def original_values(num):
if num == 0:
return 'anger'
elif num == 1:
return 'sadness'
elif num == 2:
return 'joy'
elif num == 3:
return 'surprise'
elif num == 4:
return 'love'
elif num == 5:
return 'sympathy'
elif num == 6:
return 'fear'
def modelsummary(data):
result = pipeline1(data,
pad_token_id= tokenizer.eos_token_id,
num_beams=4,
repetition_penalty=3.0,
max_length=600,
length_penalty=.50,
no_repeat_ngram_size = 3)[0]['generated_text']
result = remove_punctuations(result)
return { 'summary':result}
def modelpredict(data):
map = {0:'anger', 1:'sadness', 2:'joy', 3:'surprise', 4:'love', 5:'sympathy', 6:'fear'}
text = txt_preprocess(data)
pred=model.predict(pd.Series([data]))
return map[np.argmax(pred,axis=-1)[0]]
#OTP code
def genereteotp (email):
digits = "0123456789"
OTP = ""
for i in range(6):
OTP += digits[math.floor(random.random()*10)]
emailOTP[email]=OTP
otp = "your otp is "+OTP
print("---------------------****---------------------------------------")
print(email)
print(otp)
s = smtplib.SMTP('smtp.gmail.com', 587)
# start TLS for security
s.starttls()
# Authentication
s.login("[email protected]", "lipnacjbsxmjpjxm")
# message to be sent
message = otp
# instance of MIMEText
msg = MIMEText(message)
# sender's email address
msg['From'] = "[email protected]"
# recipient's email address
msg['To'] = email
# subject of the email
msg['Subject'] = " Shakwa Textual OTP"
print("here to send messege")
# send the message via SMTP server
s.sendmail(msg['From'], msg['To'], msg.as_string())
# terminate the SMTP session
s.quit()
#Threading functions
queuedUnSummurizedShawkas = []
semphoreShakwas=threading.Semaphore(0)
def summrizedshakwas():
global queuedUnSummurizedShawkas
global semphoreShakwas
global db
while True:
semphoreShakwas.acquire()
shawka=queuedUnSummurizedShawkas.pop(0)
tmpdict= modelsummary(shawka.complaintbody)
print(tmpdict)
shawka.summary=tmpdict['summary']
db.collection("complaints").document(shawka.id).update({"summary":shawka.summary})
thread = threading.Thread(target=summrizedshakwas)
thread.start()
#lithening to changes of documnts
callback_done = threading.Event()
def on_snapshot(doc_snapshot, changes, read_time):
global queuedUnSummurizedShawkas
global semphoreShakwas
for doc in doc_snapshot:
# print(doc.to_dict())
shakw = Classes.Shakwa.from_dict(source=doc.to_dict())
shakw.complaintbody
if shakw.summary==None:
queuedUnSummurizedShawkas.append(shakw)
semphoreShakwas.release()
callback_done.set()
docwatch= db.collection("complaints").on_snapshot(on_snapshot,)
# Main Server inilization
app = FastAPI()
@app.get("/")
def index():
return "Hello World"
@app.post("/summary")
async def read_root(request:Request):
json_data = await request.json()
if 'text'in json_data:
return modelsummary(json_data['text'])
else:
raise HTTPException(status_code=400, detail="Missing text value")
@app.post("/getOTPCode")
async def read_root(request:Request):
json_data = await request.json()
if 'email' in json_data:
genereteotp(json_data["email"])
return "message was sent succesufully to "+json_data['email']
else:
raise HTTPException(status_code=400, detail="Missing email value")
@app.post("/verifyOTP")
async def read_root(request:Request):
json_data = await request.json()
if 'email' in json_data and 'otpcode' in json_data:
if json_data['otpcode'] ==emailOTP[json_data['email']] :
return "OTP verified succesufully "
else:
return "OTP Code is wrong "
else:
raise HTTPException(status_code=400, detail="Missing email value")
@app.post("/predict")
async def read_root(request: Request):
json_data = await request.json()
if "mathod" in json_data and json_data["mathod"] == "emotion_predict" and 'text' in json_data:
return modelpredict(json_data["text"])
else:
raise HTTPException(status_code=400, detail="Missing mathod value")
@app.get("/commonwords")
def getcommonwords():
return {'التسجيل': 23, 'مش': 19, 'تطبيق': 18, 'التطبيق': 18, 'التفعيل': 17, 'كود': 13, 'ارسال': 12, 'تسجيل': 12, 'يتم': 12, 'الرقم': 12}