DiabetesPilot / app.py
Namitg02's picture
Update app.py
66604c9 verified
raw
history blame
7.71 kB
from datasets import load_dataset
from datasets import Dataset
from langchain.docstore.document import Document as LangchainDocument
from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer
import faiss
import time
import torch
import pandas as pd
from io import StringIO
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread
#from huggingface_hub import InferenceClient
from huggingface_hub import Repository, upload_file
import os
HF_TOKEN = os.getenv('HF_Token')
llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
# TheBloke/Llama-2-7B-Chat-GGML , TinyLlama/TinyLlama-1.1B-Chat-v1.0 , microsoft/Phi-3-mini-4k-instruct, health360/Healix-1.1B-V1-Chat-dDPO
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF not working
tokenizer = AutoTokenizer.from_pretrained(llm_model)
# pulling tokeinzer for text generation model
data = load_dataset("Namitg02/Test", split='train', streaming=False)
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(data)
#print(data[2])
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidng
index = faiss.IndexFlatL2(embedding_dim)
data.add_faiss_index("embeddings", custom_index=index)
# adds an index column for the embeddings
print("check1d")
#question = "How can I reverse Diabetes?"
SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
# Provides context of how to answer the question
#messages = [
# {
# "role": "system",
# "content": "You are a friendly chatbot who always responds in the style of a pirate",
# },
# {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
#]
print("check2")
memory = ConversationBufferMemory(return_messages=True)
model = AutoModelForCausalLM.from_pretrained(llm_model)
# Initializing the text generation model
terminators = [
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
]
# indicates the end of a sequence
def search(query: str, k: int = 2 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = embedding_model.encode(query) # create embedding of a new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt
#print(scores, retrieved_examples)
print("check2A")
def format_prompt(prompt,retrieved_documents,k):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['0'][idx]}\n"
return PROMPT
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived
print("check3")
#print(PROMPT)
print("check3A")
def talk(prompt,history):
k = 2 # number of retrieved documents
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
print(retrieved_documents.keys())
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
print(retrieved_documents['0'])
print(formatted_prompt)
formatted_prompt = formatted_prompt[:600] # to avoid memory issue
# print(retrieved_documents['0'][1]
# print(retrieved_documents['0'][2]
print(formatted_prompt)
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] # binding the system context and new prompt for LLM
# the chat template structure should be based on text generation model format
print("check3B")
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# tell the model to generate
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
print("check3C")
outputs = model.generate(
input_ids,
max_new_tokens=200,
eos_token_id=terminators,
do_sample=True,
temperature=0.4,
top_p=0.9,
)
# calling the model to generate response based on message/ input
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
# temperature controls randomness. more renadomness with higher temperature
# only the tokens comprising the top_p probability mass are considered for responses
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
print("check3D")
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
# stores print-ready text in a queue, to be used by a downstream application as an iterator. removes specail tokens in generated text.
# timeout for text queue. tokenizer for decoding tokens
# called by generate_kwargs
print("check3E")
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens= 100,
do_sample=True,
top_p=0.95,
temperature=0.5,
eos_token_id=terminators,
)
# send additional parameters to model for generation
print("check3F")
t = Thread(target=model.generate, kwargs=generate_kwargs)
# to process multiple instances
t.start()
# start a thread
print("check3G")
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
print("check3H")
pd.options.display.max_colwidth = 800
outputstring = ''.join(outputs)
print(outputstring)
print(prompt)
print(outputstring)
memory_string = {
"Prompt": [prompt],
"Output": [outputstring]
}
print(type(memory_string))
memory_panda = pd.DataFrame(memory_string)
print(memory_panda.iloc[[0]])
df.loc[len(df.index)] = ['prompt', outputstring]
print(memory_panda.iloc[[1]])
# datasetconversation = Dataset.from_pandas(memory_panda)
TITLE = "AI Copilot for Diabetes Patients"
DESCRIPTION = "I provide answers to concerns related to Diabetes"
import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["what is Diabetes? "]],
title=TITLE,
description=DESCRIPTION,
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check3I")
demo.launch()