Namitg02 commited on
Commit
dfaf2ba
·
verified ·
1 Parent(s): 42f5159

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -28,7 +28,7 @@ def create_vector_db():
28
  # text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=70)
29
  # texts = text_splitter.split_documents(documents)
30
 
31
- print(texts[3])
32
  # embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
33
  # df = pd.DataFrame(texts)
34
 
@@ -70,7 +70,7 @@ def create_vector_db():
70
  # text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=70)
71
  # texts = text_splitter.split_documents(documents)
72
 
73
- print(texts[3])
74
  # embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
75
  # df = pd.DataFrame(texts)
76
  #
@@ -89,7 +89,7 @@ def create_vector_db():
89
  # df[0] = df[0].str[:-2]
90
 
91
 
92
- print(df.iloc[[3]])
93
 
94
  # df['embeddings'] = df[0].apply(lambda x: embedding_model.encode(x))
95
 
@@ -110,7 +110,7 @@ def create_vector_db():
110
  # text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=70)
111
  # texts = text_splitter.split_documents(documents)
112
 
113
- print(texts[3])
114
  # embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
115
  # df = pd.DataFrame(texts)
116
 
 
28
  # text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=70)
29
  # texts = text_splitter.split_documents(documents)
30
 
31
+ # print(texts[3])
32
  # embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
33
  # df = pd.DataFrame(texts)
34
 
 
70
  # text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=70)
71
  # texts = text_splitter.split_documents(documents)
72
 
73
+ # print(texts[3])
74
  # embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
75
  # df = pd.DataFrame(texts)
76
  #
 
89
  # df[0] = df[0].str[:-2]
90
 
91
 
92
+ # print(df.iloc[[3]])
93
 
94
  # df['embeddings'] = df[0].apply(lambda x: embedding_model.encode(x))
95
 
 
110
  # text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=70)
111
  # texts = text_splitter.split_documents(documents)
112
 
113
+ # print(texts[3])
114
  # embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
115
  # df = pd.DataFrame(texts)
116