Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -74,11 +74,11 @@ def download_img(identifier, url):
|
|
74 |
def predict(image=None, text=None, sketch=None):
|
75 |
if image is not None:
|
76 |
input_embeddings = compute_image_embeddings([load_image(image)]).detach().numpy()
|
77 |
-
topk = {"local":
|
78 |
else:
|
79 |
if text:
|
80 |
query = text
|
81 |
-
topk = {text:
|
82 |
else:
|
83 |
x = torch.tensor(sketch, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
|
84 |
with torch.no_grad():
|
@@ -86,7 +86,7 @@ def predict(image=None, text=None, sketch=None):
|
|
86 |
probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
87 |
values, indices = torch.topk(probabilities, 5)
|
88 |
query = LABELS[indices[0]]
|
89 |
-
topk = {LABELS[i]: v.item() for i, v in zip(indices, values)}
|
90 |
input_embeddings = compute_text_embeddings([query]).detach().numpy()
|
91 |
|
92 |
n_results = 3
|
|
|
74 |
def predict(image=None, text=None, sketch=None):
|
75 |
if image is not None:
|
76 |
input_embeddings = compute_image_embeddings([load_image(image)]).detach().numpy()
|
77 |
+
topk = {"local": 1}
|
78 |
else:
|
79 |
if text:
|
80 |
query = text
|
81 |
+
topk = {text: 1}
|
82 |
else:
|
83 |
x = torch.tensor(sketch, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
|
84 |
with torch.no_grad():
|
|
|
86 |
probabilities = torch.nn.functional.softmax(out[0], dim=0)
|
87 |
values, indices = torch.topk(probabilities, 5)
|
88 |
query = LABELS[indices[0]]
|
89 |
+
topk = {LABELS[i]: v.item() / 100.0 for i, v in zip(indices, values)}
|
90 |
input_embeddings = compute_text_embeddings([query]).detach().numpy()
|
91 |
|
92 |
n_results = 3
|