Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct
|
6 |
+
# https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct
|
7 |
+
# model_path = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
|
8 |
+
# model_path = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
|
9 |
+
|
10 |
+
# Load model & processor
|
11 |
+
model_name= "SmolVLM2-2.2B-Instruct"
|
12 |
+
model_path=f"HuggingFaceTB/{model_name}"
|
13 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
18 |
+
model_path,
|
19 |
+
torch_dtype=torch.float16, # Use FP16 for better performance on T4
|
20 |
+
device_map="auto" # Auto-assign model to GPU
|
21 |
+
).to(device)
|
22 |
+
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import os
|
26 |
+
def describe_image(image_path, user_prompt="Describe the image in detail.",system_role=""):
|
27 |
+
global model, processor
|
28 |
+
messages=[]
|
29 |
+
if not os.path.exists(image_path):
|
30 |
+
return None
|
31 |
+
if system_role!="":
|
32 |
+
messages.append( {
|
33 |
+
"role": "system",
|
34 |
+
"content": [{"type": "text", "text": system_role}]
|
35 |
+
})
|
36 |
+
messages.append(
|
37 |
+
{
|
38 |
+
"role": "user",
|
39 |
+
"content": [
|
40 |
+
{"type": "text", "text": user_prompt},
|
41 |
+
{"type": "image", "path": image_path},
|
42 |
+
]
|
43 |
+
}
|
44 |
+
)
|
45 |
+
|
46 |
+
# Prepare input
|
47 |
+
inputs = processor.apply_chat_template(
|
48 |
+
messages,
|
49 |
+
add_generation_prompt=True,
|
50 |
+
tokenize=True,
|
51 |
+
return_dict=True,
|
52 |
+
return_tensors="pt",
|
53 |
+
).to(model.device)
|
54 |
+
|
55 |
+
# Convert only float32 tensors to float16
|
56 |
+
for k, v in inputs.items():
|
57 |
+
if v.dtype == torch.float32:
|
58 |
+
inputs[k] = v.to(torch.float16)
|
59 |
+
|
60 |
+
# Generate response
|
61 |
+
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=1024)
|
62 |
+
|
63 |
+
# Decode and return output
|
64 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
65 |
+
return generated_texts[0].split("Assistant:")[-1].replace("\n\n\n\n\n\n", "").strip()
|
66 |
+
|
67 |
+
import gradio as gr
|
68 |
+
|
69 |
+
def ui():
|
70 |
+
return gr.Interface(
|
71 |
+
fn=describe_image,
|
72 |
+
inputs=[
|
73 |
+
gr.Image(type="filepath", label="Upload Image"),
|
74 |
+
gr.Textbox(value="Describe the image in detail.", label="User Prompt"),
|
75 |
+
gr.Textbox(value="", label="System Role (Optional)")
|
76 |
+
],
|
77 |
+
outputs=gr.Textbox(label="Image Description"),
|
78 |
+
title="Image Captioning App",
|
79 |
+
description="Upload an image and customize prompts to get a detailed description."
|
80 |
+
)
|
81 |
+
demo=ui()
|
82 |
+
demo.queue().launch()
|