|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
import pathlib |
|
import random |
|
import shlex |
|
import subprocess |
|
|
|
import gradio as gr |
|
import torch |
|
from huggingface_hub import snapshot_download |
|
|
|
if os.getenv('SYSTEM') == 'spaces': |
|
subprocess.run(shlex.split('pip uninstall -y modelscope')) |
|
subprocess.run( |
|
shlex.split( |
|
'pip install git+https://github.com/modelscope/modelscope.git@refs/pull/207/head' |
|
)) |
|
|
|
from modelscope.outputs import OutputKeys |
|
from modelscope.pipelines import pipeline |
|
|
|
model_dir = pathlib.Path('weights') |
|
if not model_dir.exists(): |
|
model_dir.mkdir() |
|
snapshot_download('damo-vilab/modelscope-damo-text-to-video-synthesis', |
|
repo_type='model', |
|
local_dir=model_dir) |
|
|
|
DESCRIPTION = '# [Text-to-Video Playground](https://modelscope.cn/models/damo/text-to-video-synthesis/summary)' |
|
if (SPACE_ID := os.getenv('SPACE_ID')) is not None: |
|
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' |
|
|
|
pipe = pipeline('text-to-video-synthesis', model_dir.as_posix()) |
|
|
|
|
|
def generate(prompt: str, seed: int) -> str: |
|
if seed == -1: |
|
seed = random.randint(0, 1000000) |
|
torch.manual_seed(seed) |
|
return pipe({'text': prompt})[OutputKeys.OUTPUT_VIDEO] |
|
|
|
|
|
examples = [ |
|
['An astronaut riding a horse.', 0], |
|
['A panda eating bamboo on a rock.', 0], |
|
['Spiderman is surfing.', 0], |
|
] |
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Text(label='Prompt', max_lines=1) |
|
seed = gr.Slider( |
|
label='Seed', |
|
minimum=-1, |
|
maximum=1000000, |
|
step=25, |
|
value=-1, |
|
info='If set to -1, a different seed will be used each time.') |
|
run_button = gr.Button('Run') |
|
with gr.Column(): |
|
result = gr.Video(label='Result') |
|
|
|
inputs = [prompt, seed] |
|
gr.Examples(examples=examples, |
|
inputs=inputs, |
|
outputs=result, |
|
fn=generate, |
|
cache_examples=os.getenv('SYSTEM') == 'spaces') |
|
|
|
prompt.submit(fn=generate, inputs=inputs, outputs=result) |
|
run_button.click(fn=generate, inputs=inputs, outputs=result) |
|
|
|
demo.queue(api_open=False, max_size=15).launch() |
|
|