Spaces:
Runtime error
Runtime error
WaterKnight
commited on
Commit
•
058960f
1
Parent(s):
3f5c88f
Neural Style Transfer using PaddleHub model and Clip.
Browse filesClip is used to get an image for content based on text input.
- .gitattributes +1 -0
- .gitignore +1 -0
- README.md +4 -4
- app.py +91 -0
- packages.txt +3 -0
- requirements.txt +4 -0
- styles/mona1.jpeg +0 -0
- styles/starry.jpeg +0 -0
- unsplash-dataset/features.npy +3 -0
- unsplash-dataset/photo_ids.csv +0 -0
- unsplash-dataset/photos.tsv000 +0 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
unsplash-dataset/features.npy filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gradio_queue.db
|
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
---
|
2 |
title: Neural Style Transfer
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
app_file: app.py
|
8 |
-
pinned:
|
9 |
---
|
10 |
|
11 |
# Configuration
|
|
|
1 |
---
|
2 |
title: Neural Style Transfer
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
app_file: app.py
|
8 |
+
pinned: true
|
9 |
---
|
10 |
|
11 |
# Configuration
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from io import BytesIO
|
3 |
+
import requests
|
4 |
+
|
5 |
+
# Interface utilities
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Data utilities
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
|
12 |
+
# Image utilities
|
13 |
+
from PIL import Image
|
14 |
+
import cv2
|
15 |
+
|
16 |
+
# Clip Model
|
17 |
+
import torch
|
18 |
+
from transformers import CLIPTokenizer, CLIPModel
|
19 |
+
|
20 |
+
# Style Transfer Model
|
21 |
+
import paddlehub as hub
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
os.system("hub install stylepro_artistic==1.0.1")
|
26 |
+
stylepro_artistic = hub.Module(name="stylepro_artistic")
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
# Clip Model
|
31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
33 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
34 |
+
model = model.to(device)
|
35 |
+
|
36 |
+
# Load Data
|
37 |
+
photos = pd.read_csv("unsplash-dataset/photos.tsv000", sep="\t", header=0)
|
38 |
+
photo_features = np.load("unsplash-dataset/features.npy")
|
39 |
+
photo_ids = pd.read_csv("unsplash-dataset/photo_ids.csv")
|
40 |
+
photo_ids = list(photo_ids["photo_id"])
|
41 |
+
|
42 |
+
def image_from_text(text_input):
|
43 |
+
## Inference
|
44 |
+
with torch.no_grad():
|
45 |
+
inputs = tokenizer([text_input], padding=True, return_tensors="pt")
|
46 |
+
text_features = model.get_text_features(**inputs).cpu().numpy()
|
47 |
+
|
48 |
+
## Find similarity
|
49 |
+
similarities = list((text_features @ photo_features.T).squeeze(0))
|
50 |
+
|
51 |
+
## Return best image :)
|
52 |
+
idx = sorted(zip(similarities, range(photo_features.shape[0])), key=lambda x: x[0], reverse=True)[0][1]
|
53 |
+
photo_id = photo_ids[idx]
|
54 |
+
photo_data = photos[photos["photo_id"] == photo_id].iloc[0]
|
55 |
+
|
56 |
+
# Downlaod image
|
57 |
+
response = requests.get(photo_data["photo_image_url"] + "?w=640")
|
58 |
+
pil_image = Image.open(BytesIO(response.content)).convert("RGB")
|
59 |
+
open_cv_image = np.array(pil_image)
|
60 |
+
# Convert RGB to BGR
|
61 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
62 |
+
|
63 |
+
return open_cv_image
|
64 |
+
|
65 |
+
def inference(content, style):
|
66 |
+
result = stylepro_artistic.style_transfer(
|
67 |
+
images=[{
|
68 |
+
"content": image_from_text(content),
|
69 |
+
"styles": [cv2.imread(style.name)]
|
70 |
+
}])
|
71 |
+
return Image.fromarray(np.uint8(result[0]["data"])[:,:,::-1]).convert("RGB")
|
72 |
+
|
73 |
+
title = "Neural Style Transfer"
|
74 |
+
description = "Gradio demo for Neural Style Transfer. To use it, simply enter the text for image content and upload style image. Read more at the links below."
|
75 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2003.07694'target='_blank'>Parameter-Free Style Projection for Arbitrary Style Transfer</a> | <a href='https://github.com/PaddlePaddle/PaddleHub' target='_blank'>Github Repo</a></br><a href='https://arxiv.org/abs/2103.00020'target='_blank'>Clip paper</a> | <a href='https://huggingface.co/transformers/model_doc/clip.html' target='_blank'>Hugging Face Clip Implementation</a></p>"
|
76 |
+
examples=[
|
77 |
+
["a cute kangaroo", "styles/starry.jpeg"],
|
78 |
+
["man holding beer", "styles/mona1.jpeg"],
|
79 |
+
]
|
80 |
+
interface = gr.Interface(inference,
|
81 |
+
inputs=[
|
82 |
+
gr.inputs.Textbox(lines=1, placeholder="Describe the content of the image", default="a cute kangaroo", label="Describe the image to which the style will be applied"),
|
83 |
+
gr.inputs.Image(type="file", label="Style to be applied"),
|
84 |
+
],
|
85 |
+
outputs=gr.outputs.Image(type="pil"),
|
86 |
+
enable_queue=True,
|
87 |
+
title=title,
|
88 |
+
description=description,
|
89 |
+
article=article,
|
90 |
+
examples=examples)
|
91 |
+
interface.launch()
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
libsm6
|
3 |
+
libxext6
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
paddlepaddle
|
2 |
+
paddlehub
|
3 |
+
transformers
|
4 |
+
torch
|
styles/mona1.jpeg
ADDED
styles/starry.jpeg
ADDED
unsplash-dataset/features.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14ef8a96e6b6adae89432ab046909ab600b5793ba47f2c352168696e7eb9dfb0
|
3 |
+
size 51191936
|
unsplash-dataset/photo_ids.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unsplash-dataset/photos.tsv000
ADDED
The diff for this file is too large to render.
See raw diff
|
|