|
import streamlit as st |
|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import numpy as np |
|
|
|
|
|
def load_data(): |
|
return pd.read_csv('qna.csv', encoding='latin1', delimiter=';') |
|
|
|
def get_most_similar_question(new_sentence, vectorizer, tfidf_matrix, questions, answers): |
|
new_tfidf = vectorizer.transform([new_sentence]) |
|
|
|
similarities = cosine_similarity(new_tfidf, tfidf_matrix) |
|
|
|
most_similar_index = np.argmax(similarities) |
|
|
|
similarity_percentage = similarities[0, most_similar_index] * 100 |
|
|
|
return answers[most_similar_index], similarity_percentage |
|
|
|
def answer_the_question(new_sentence, vectorizer, tfidf_matrix, questions, answers): |
|
most_similar_answer, similarity_percentage = get_most_similar_question(new_sentence, vectorizer, tfidf_matrix, questions, answers) |
|
if similarity_percentage > 70: |
|
return most_similar_answer |
|
else: |
|
return 'Sorry, I am not aware of this information :(' |
|
|
|
def main(): |
|
|
|
st.markdown( |
|
"<h1 style='text-align: center; color: #269A96; font-size: 70px;'>Unicorn</h1>", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
data = load_data() |
|
questions = data['question'].tolist() |
|
answers = data['answer'].tolist() |
|
|
|
|
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform(questions) |
|
|
|
|
|
user_question = st.text_input("Ask me a question:", key="user_question") |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.stTextInput > div > div > div > input { |
|
color: #000000 !important; /* Text color set to black */ |
|
background-color: #247370 !important; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
if st.button("Submit", key="submit_button", help="Submit your question"): |
|
if user_question: |
|
response = answer_the_question(user_question, vectorizer, tfidf_matrix, questions, answers) |
|
st.write(response) |
|
else: |
|
st.warning("Please ask a question.") |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.css-1bkz6v6 { |
|
background-color: #a5eae9; |
|
color: #FFFFFF; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|