Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,99 @@
|
|
1 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
from concurrent.futures import ThreadPoolExecutor
|
5 |
-
from threading import Lock
|
6 |
|
7 |
-
# Global cache and lock for thread-safety
|
8 |
-
CACHE_SIZE = 100
|
9 |
-
prediction_cache = {}
|
10 |
-
cache_lock = Lock()
|
11 |
|
12 |
-
# Mapping for sentiment labels from cardiffnlp/twitter-roberta-base-sentiment
|
13 |
-
SENTIMENT_LABEL_MAPPING = {
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
}
|
18 |
|
19 |
-
def load_model(model_name):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
# Load both models concurrently at startup.
|
37 |
-
with ThreadPoolExecutor() as executor:
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
sentiment_pipeline = sentiment_future.result()
|
42 |
-
emotion_pipeline = emotion_future.result()
|
43 |
|
44 |
-
def analyze_text(text):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
78 |
-
# Define the Gradio interface.
|
79 |
-
demo = gr.Interface(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
)
|
93 |
|
94 |
-
# Warm up the models with a sample input.
|
95 |
-
_ = analyze_text("Warming up models...")
|
96 |
|
97 |
-
if __name__ == "__main__":
|
98 |
-
|
99 |
-
|
|
|
1 |
+
# from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
# import gradio as gr
|
3 |
+
# import torch
|
4 |
+
# from concurrent.futures import ThreadPoolExecutor
|
5 |
+
# from threading import Lock
|
6 |
|
7 |
+
# # Global cache and lock for thread-safety
|
8 |
+
# CACHE_SIZE = 100
|
9 |
+
# prediction_cache = {}
|
10 |
+
# cache_lock = Lock()
|
11 |
|
12 |
+
# # Mapping for sentiment labels from cardiffnlp/twitter-roberta-base-sentiment
|
13 |
+
# SENTIMENT_LABEL_MAPPING = {
|
14 |
+
# "LABEL_0": "negative",
|
15 |
+
# "LABEL_1": "neutral",
|
16 |
+
# "LABEL_2": "positive"
|
17 |
+
# }
|
18 |
|
19 |
+
# def load_model(model_name):
|
20 |
+
# """
|
21 |
+
# Loads the model with 8-bit quantization if a GPU is available;
|
22 |
+
# otherwise, loads the full model.
|
23 |
+
# """
|
24 |
+
# if torch.cuda.is_available():
|
25 |
+
# model = AutoModelForSequenceClassification.from_pretrained(
|
26 |
+
# model_name, load_in_8bit=True, device_map="auto"
|
27 |
+
# )
|
28 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
# device = 0 # GPU index
|
30 |
+
# else:
|
31 |
+
# model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
32 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
+
# device = -1
|
34 |
+
# return pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
|
35 |
|
36 |
+
# # Load both models concurrently at startup.
|
37 |
+
# with ThreadPoolExecutor() as executor:
|
38 |
+
# sentiment_future = executor.submit(load_model, "cardiffnlp/twitter-roberta-base-sentiment")
|
39 |
+
# emotion_future = executor.submit(load_model, "bhadresh-savani/bert-base-uncased-emotion")
|
40 |
|
41 |
+
# sentiment_pipeline = sentiment_future.result()
|
42 |
+
# emotion_pipeline = emotion_future.result()
|
43 |
|
44 |
+
# def analyze_text(text):
|
45 |
+
# # Check cache first (thread-safe)
|
46 |
+
# with cache_lock:
|
47 |
+
# if text in prediction_cache:
|
48 |
+
# return prediction_cache[text]
|
49 |
|
50 |
+
# try:
|
51 |
+
# # Run both model inferences in parallel.
|
52 |
+
# with ThreadPoolExecutor() as executor:
|
53 |
+
# future_sentiment = executor.submit(sentiment_pipeline, text)
|
54 |
+
# future_emotion = executor.submit(emotion_pipeline, text)
|
55 |
+
# sentiment_result = future_sentiment.result()[0]
|
56 |
+
# emotion_result = future_emotion.result()[0]
|
57 |
|
58 |
+
# # Remap the sentiment label to a human-readable format if available.
|
59 |
+
# raw_sentiment_label = sentiment_result.get("label", "")
|
60 |
+
# sentiment_label = SENTIMENT_LABEL_MAPPING.get(raw_sentiment_label, raw_sentiment_label)
|
61 |
|
62 |
+
# # Format the output with rounded scores.
|
63 |
+
# result = {
|
64 |
+
# "Sentiment": {sentiment_label: round(sentiment_result['score'], 4)},
|
65 |
+
# "Emotion": {emotion_result['label']: round(emotion_result['score'], 4)}
|
66 |
+
# }
|
67 |
+
# except Exception as e:
|
68 |
+
# result = {"error": str(e)}
|
69 |
|
70 |
+
# # Update the cache in a thread-safe manner.
|
71 |
+
# with cache_lock:
|
72 |
+
# if len(prediction_cache) >= CACHE_SIZE:
|
73 |
+
# prediction_cache.pop(next(iter(prediction_cache)))
|
74 |
+
# prediction_cache[text] = result
|
75 |
|
76 |
+
# return result
|
77 |
|
78 |
+
# # Define the Gradio interface.
|
79 |
+
# demo = gr.Interface(
|
80 |
+
# fn=analyze_text,
|
81 |
+
# inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
|
82 |
+
# outputs=gr.JSON(label="Analysis Results"),
|
83 |
+
# title="🚀 Fast Sentiment & Emotion Analysis",
|
84 |
+
# description="Optimized application that remaps sentiment labels and uses parallel processing.",
|
85 |
+
# examples=[
|
86 |
+
# ["I'm thrilled to start this new adventure!"],
|
87 |
+
# ["This situation is making me really frustrated."],
|
88 |
+
# ["I feel so heartbroken and lost."]
|
89 |
+
# ],
|
90 |
+
# theme="soft",
|
91 |
+
# allow_flagging="never"
|
92 |
+
# )
|
93 |
|
94 |
+
# # Warm up the models with a sample input.
|
95 |
+
# _ = analyze_text("Warming up models...")
|
96 |
|
97 |
+
# if __name__ == "__main__":
|
98 |
+
# # Bind to all interfaces for Hugging Face Spaces.
|
99 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860)
|