# from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer # import gradio as gr # import torch # from concurrent.futures import ThreadPoolExecutor # from threading import Lock # # Global cache and lock for thread-safety # CACHE_SIZE = 100 # prediction_cache = {} # cache_lock = Lock() # # Mapping for sentiment labels from cardiffnlp/twitter-roberta-base-sentiment # SENTIMENT_LABEL_MAPPING = { # "LABEL_0": "negative", # "LABEL_1": "neutral", # "LABEL_2": "positive" # } # def load_model(model_name): # """ # Loads the model with 8-bit quantization if a GPU is available; # otherwise, loads the full model. # """ # if torch.cuda.is_available(): # model = AutoModelForSequenceClassification.from_pretrained( # model_name, load_in_8bit=True, device_map="auto" # ) # tokenizer = AutoTokenizer.from_pretrained(model_name) # device = 0 # GPU index # else: # model = AutoModelForSequenceClassification.from_pretrained(model_name) # tokenizer = AutoTokenizer.from_pretrained(model_name) # device = -1 # return pipeline("text-classification", model=model, tokenizer=tokenizer, device=device) # # Load both models concurrently at startup. # with ThreadPoolExecutor() as executor: # sentiment_future = executor.submit(load_model, "cardiffnlp/twitter-roberta-base-sentiment") # emotion_future = executor.submit(load_model, "bhadresh-savani/bert-base-uncased-emotion") # sentiment_pipeline = sentiment_future.result() # emotion_pipeline = emotion_future.result() # def analyze_text(text): # # Check cache first (thread-safe) # with cache_lock: # if text in prediction_cache: # return prediction_cache[text] # try: # # Run both model inferences in parallel. # with ThreadPoolExecutor() as executor: # future_sentiment = executor.submit(sentiment_pipeline, text) # future_emotion = executor.submit(emotion_pipeline, text) # sentiment_result = future_sentiment.result()[0] # emotion_result = future_emotion.result()[0] # # Remap the sentiment label to a human-readable format if available. # raw_sentiment_label = sentiment_result.get("label", "") # sentiment_label = SENTIMENT_LABEL_MAPPING.get(raw_sentiment_label, raw_sentiment_label) # # Format the output with rounded scores. # result = { # "Sentiment": {sentiment_label: round(sentiment_result['score'], 4)}, # "Emotion": {emotion_result['label']: round(emotion_result['score'], 4)} # } # except Exception as e: # result = {"error": str(e)} # # Update the cache in a thread-safe manner. # with cache_lock: # if len(prediction_cache) >= CACHE_SIZE: # prediction_cache.pop(next(iter(prediction_cache))) # prediction_cache[text] = result # return result # # Define the Gradio interface. # demo = gr.Interface( # fn=analyze_text, # inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"), # outputs=gr.JSON(label="Analysis Results"), # title="🚀 Fast Sentiment & Emotion Analysis", # description="Optimized application that remaps sentiment labels and uses parallel processing.", # examples=[ # ["I'm thrilled to start this new adventure!"], # ["This situation is making me really frustrated."], # ["I feel so heartbroken and lost."] # ], # theme="soft", # allow_flagging="never" # ) # # Warm up the models with a sample input. # _ = analyze_text("Warming up models...") # if __name__ == "__main__": # # Bind to all interfaces for Hugging Face Spaces. # demo.launch(server_name="0.0.0.0", server_port=7860)