File size: 2,383 Bytes
11ef473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import gradio as gr
from PIL import Image

# Use a publicly available high-capacity model.
# For instance, we use "google/pix2struct-docvqa-large". 
# (If you need a different model or a private one, adjust accordingly and add authentication if necessary.)
model_name = "google/pix2struct-docvqa-large"

model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
processor = Pix2StructProcessor.from_pretrained(model_name)

def solve_problem(image):
    try:
        # Ensure the image is in RGB.
        image = image.convert("RGB")
        
        # Preprocess image and text prompt.
        inputs = processor(
            images=[image],
            text="Solve the following problem:",
            return_tensors="pt",
            max_patches=2048
        )
        
        # Generate prediction.
        predictions = model.generate(
            **inputs,
            max_new_tokens=200,
            early_stopping=True,
            num_beams=4,
            temperature=0.2
        )
        
        # Decode the prompt (input IDs) and the generated output.
        problem_text = processor.decode(
            inputs["input_ids"][0],
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )
        solution = processor.decode(
            predictions[0],
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )
        return f"Problem: {problem_text}\nSolution: {solution}"
    except Exception as e:
        return f"Error processing image: {str(e)}"

# Set up the Gradio interface.
iface = gr.Interface(
    fn=solve_problem,
    inputs=gr.Image(type="pil", label="Upload Your Problem Image", image_mode="RGB"),
    outputs=gr.Textbox(label="Solution", show_copy_button=True),
    title="Problem Solver with Pix2Struct",
    description=(
        "Upload an image (for example, a handwritten math or logic problem) "
        "and get a solution generated by a high-capacity Pix2Struct model.\n\n"
        "Note: For best results on domain-specific tasks, consider fine-tuning on your own dataset."
    ),
    examples=[
        ["example_problem1.png"],
        ["example_problem2.jpg"]
    ],
    theme="soft",
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()