import gradio as gr import os import time from huggingface_hub import InferenceClient from huggingface_hub import hf_hub_download import chatglm_cpp pipeline = None def load(repo_id, filename): global pipeline local_dir = f"./Models/{repo_id}" hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) model = os.path.join(local_dir, filename) max_length = 8192 pipeline = chatglm_cpp.Pipeline(model, max_length=max_length) return f"Model {filename} from {repo_id} loaded successfully." load("None1145/ChatGLM3-6B-Theresa-GGML", "ChatGLM3-6B-Theresa-GGML-Q4_0.bin") messages = [] def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): global messages if pipeline is None: yield "Error: No model loaded. Please load a model first." return response = "..." for _ in range(0, 3): yield response time.sleep(1) response += " ..." generation_kwargs = dict( max_length=8192, max_context_length=max_tokens, do_sample=temperature > 0, top_k=0, top_p=top_p, temperature=temperature, repetition_penalty=1.0, stream=True, ) if messages == []: messages = [chatglm_cpp.ChatMessage(role="system", content=system_message)] messages.append(chatglm_cpp.ChatMessage(role="user", content=message)) response = "" for chunk in pipeline.chat(messages, **generation_kwargs): response += chunk.content yield response messages.append(chatglm_cpp.ChatMessage(role="assistant", content=response)) with gr.Blocks() as chat: with gr.Row(): repo_id_input = gr.Textbox(label="Repo ID", value="None1145/ChatGLM3-6B-Theresa-GGML") filename_input = gr.Textbox(label="Filename", value="ChatGLM3-6B-Theresa-GGML-Q4_0.bin") load_button = gr.Button("Load Model") load_status = gr.Textbox(label="Load Status", interactive=False) load_button.click(load, inputs=[repo_id_input, filename_input], outputs=load_status) chat_interface = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": chat.launch()