Spaces:
Sleeping
Sleeping
File size: 7,821 Bytes
981080a eb7a6f0 981080a 47d5dee 981080a eb7a6f0 981080a 47d5dee 981080a 47d5dee 981080a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
PREFIX = """You are an Internet Search Scraper.
Your duty is to use the provided search tools to scrape text from websites, and then sort through the search results in the observation to find information that fits the user's requirements.
Deny the users request to perform any search that can be considered dangerous, harmful, illegal, or potentially illegal
You have access to the following tools:
- action: UPDATE-TASK action_input=NEW_TASK
- action: SEARCH_ENGINE action_input=SEARCH_QUERY
- action: SCRAPE_WEBSITE action_input=WEBSITE_URL
- action: COMPLETE
Search Purpose:
{purpose}
"""
FINDER = """
Instructions
- Use the provided tool to find a website to scrape
- Use the tool provided tool to scrape the text from the website url
- Find the pertinent information in the text that you scrape
- When you are finished, return with action: COMPLETE
Use the following format:
task: choose the next action from your available tools
action: the action to take (should be one of [UPDATE-TASK, SEARCH_ENGINE, WEBSITE_SCRAPE, COMPLETE]) action_input=XXX
observation: the result of the action
action: SEARCH action_input=URL
action: COMPLETE
Example:
***************************
User command: Find me the breaking news from today
action: SEARCH_ENGINE action_input=https://www.google.com/search?q=todays+breaking+news
Response:
Assistant: I found the the following news articles.....
action: COMPLETE
***************************
Progress:
{history}"""
MODEL_FINDER_PRE = """
You have access to the following tools:
- action: UPDATE-TASK action_input=NEW_TASK
- action: SEARCH action_input=SEARCH_QUERY
- action: COMPLETE
Instructions
- Generate a search query for the requested model from these options:
>{TASKS}
- Return the search query using the search tool
- Wait for the search to return a result
- After observing the search result, choose a model
- Return the name of the repo and model ("repo/model")
- When you are finished, return with action: COMPLETE
Use the following format:
task: the input task you must complete
thought: you should always think about what to do
action: the action to take (should be one of [UPDATE-TASK, SEARCH, COMPLETE]) action_input=XXX
observation: the result of the action
thought: you should always think after an observation
action: SEARCH action_input='text-generation'
... (thought/action/observation/thought can repeat N times)
Example:
***************************
User command: Find me a text generation model with less than 50M parameters.
thought: I will use the option 'text-generation'
action: SEARCH action_input=text-generation
--- pause and wait for data to be returned ---
Response:
Assistant: I found the 'distilgpt2' model which has around 82M parameters. It is a distilled version of the GPT-2 model from OpenAI, trained by Hugging Face. Here's how to load it:
action: COMPLETE
***************************
You are attempting to complete the task
task: {task}
{history}"""
ACTION_PROMPT = """
You have access to the following tools:
- action: UPDATE-TASK action_input=NEW_TASK
- action: SEARCH action_input=SEARCH_QUERY
- action: COMPLETE
Instructions
- Generate a search query for the requested model
- Return the search query using the search tool
- Wait for the search to return a result
- After observing the search result, choose a model
- Return the name of the repo and model ("repo/model")
Use the following format:
task: the input task you must complete
action: the action to take (should be one of [UPDATE-TASK, SEARCH, COMPLETE]) action_input=XXX
observation: the result of the action
action: SEARCH action_input='text generation'
You are attempting to complete the task
task: {task}
{history}"""
ACTION_PROMPT_PRE = """
You have access to the following tools:
- action: UPDATE-TASK action_input=NEW_TASK
- action: SEARCH action_input=SEARCH_QUERY
- action: COMPLETE
Instructions
- Generate a search query for the requested model
- Return the search query using the search tool
- Wait for the search to return a result
- After observing the search result, choose a model
- Return the name of the repo and model ("repo/model")
Use the following format:
task: the input task you must complete
thought: you should always think about what to do
action: the action to take (should be one of [UPDATE-TASK, SEARCH, COMPLETE]) action_input=XXX
observation: the result of the action
thought: you should always think after an observation
action: SEARCH action_input='text generation'
... (thought/action/observation/thought can repeat N times)
You are attempting to complete the task
task: {task}
{history}"""
TASK_PROMPT = """
You are attempting to complete the task
task: {task}
Progress:
{history}
Tasks should be small, isolated, and independent
To start a search use the format:
action: SEARCH_ENGINE action_input=URL/?q='SEARCH_QUERY'
What should the task be for us to achieve the purpose?
task: """
COMPRESS_DATA_PROMPT_SMALL = """
You are attempting to complete the task
task: {task}
Current data:
{knowledge}
New data:
{history}
Compress the data above into a concise data presentation of relevant data
Include datapoints that will provide greater accuracy in completing the task
Return the data in JSON format to save space
"""
COMPRESS_DATA_PROMPT = """
You are attempting to complete the task
task: {task}
Current data:
{knowledge}
New data:
{history}
Compress the data above into a concise data presentation of relevant data
Include datapoints that will provide greater accuracy in completing the task
"""
COMPRESS_HISTORY_PROMPT = """
You are attempting to complete the task
task: {task}
Progress:
{history}
Compress the timeline of progress above into a single summary (as a paragraph)
Include all important milestones, the current challenges, and implementation details necessary to proceed
"""
LOG_PROMPT = """
PROMPT
**************************************
{}
**************************************
"""
LOG_RESPONSE = """
RESPONSE
**************************************
{}
**************************************
"""
FINDER1 = """
Example Response 1:
User command: Find me a text generation model with less than 50M parameters.
Query: text generation
--- pause and wait for data to be returned ---
Assistant: I found the 'distilgpt2' model which has around 82M parameters. It is a distilled version of the GPT-2 model from OpenAI, trained by Hugging Face. Here's how to load it:
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
model = AutoModelForMaskedLM.from_pretrained("distilgpt2")
```
Example Response 2:
User command: Help me locate a multilingual Named Entity Recognition model.
Query: named entity recognition
--- pause and wait for data to be returned ---
Assistant: I discovered the 'dbmdz/bert-base-multilingual-cased' model, which supports named entity recognition across multiple languages. Here's how to load it:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-multilingual-cased")
model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-base-multilingual-cased")
```
Example Response 3:
User command: Search for a question-answering model fine-tuned on the SQuAD v2 dataset with more than 90% accuracy.
action: SEARCH action_input=named entity recognition
--- pause and wait for data to be returned ---
Assistant: I found the 'pranavkv/roberta-base-squad2' model, which was fine-tuned on the SQuAD v2 dataset and achieves approximately 91% accuracy. Below is the way to load it:
```python
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("pranavkv/roberta-base-squad2")
model = AutoModelForQuestionAnswering.from_pretrained("pranavkv/roberta-base-squad2")
```
""" |