Update app.py
Browse files
app.py
CHANGED
@@ -1,163 +1,112 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
11 |
-
insert_recom_prompt, compose_prompt_to_copy,
|
12 |
-
)
|
13 |
-
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
14 |
-
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
|
15 |
-
from tagger.utils import (
|
16 |
-
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
|
17 |
-
V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS,
|
18 |
-
)
|
19 |
|
|
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
css = """
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
"""
|
29 |
|
30 |
-
with gr.Blocks(theme=
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
|
38 |
-
with gr.Accordion(label="Advanced options", open=False):
|
39 |
-
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
40 |
-
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
41 |
-
tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
42 |
-
tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
43 |
-
tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
44 |
-
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
45 |
-
tagger_generate_from_image = gr.Button(value="Generate Tags from Image")
|
46 |
-
with gr.Row():
|
47 |
-
v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
|
48 |
-
v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
|
49 |
-
random_prompt = gr.Button(value="Extend Prompt 🎲", size="sm", scale=1)
|
50 |
-
clear_prompt = gr.Button(value="Clear Prompt 🗑️", size="sm", scale=1)
|
51 |
-
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
52 |
-
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
|
53 |
-
with gr.Accordion("Advanced options", open=False):
|
54 |
-
width = gr.Number(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
55 |
-
height = gr.Number(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
56 |
-
steps = gr.Number(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
57 |
-
cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
58 |
-
with gr.Accordion("Recommended Prompt", open=False):
|
59 |
-
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
60 |
with gr.Row():
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
with gr.Row():
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
interactive=False, min_width=80, visible=True) for _ in range(max_images)]
|
85 |
-
with gr.Group():
|
86 |
-
results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
|
87 |
-
container=True, format="png", object_fit="cover", columns=2, rows=2)
|
88 |
-
image_files = gr.Files(label="Download", interactive=False)
|
89 |
-
clear_results = gr.Button("Clear Gallery / Download 🗑️")
|
90 |
-
with gr.Column():
|
91 |
-
examples = gr.Examples(
|
92 |
-
examples = [
|
93 |
-
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
|
94 |
-
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
|
95 |
-
["kafuu chino, 1girl, solo"],
|
96 |
-
["1girl"],
|
97 |
-
["beautiful sunset"],
|
98 |
-
],
|
99 |
-
inputs=[prompt],
|
100 |
-
)
|
101 |
-
gr.Markdown(
|
102 |
-
f"""This demo was created in reference to the following demos.<br>
|
103 |
-
[Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood),
|
104 |
-
[Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL),
|
105 |
-
[Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).
|
106 |
-
"""
|
107 |
)
|
108 |
-
gr.DuplicateButton(value="Duplicate Space")
|
109 |
-
gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")
|
110 |
-
|
111 |
-
gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
|
112 |
-
model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
|
113 |
-
.success(warm_model, [model_name], None, queue=True, show_api=False)
|
114 |
-
for i, o in enumerate(output):
|
115 |
-
img_i = gr.Number(i, visible=False)
|
116 |
-
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
117 |
-
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
|
118 |
-
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
|
119 |
-
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
|
120 |
-
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
121 |
-
outputs=[o], queue=True, show_api=False)
|
122 |
-
gen_event2 = gr.on(triggers=[random_button.click],
|
123 |
-
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
|
124 |
-
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
|
125 |
-
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
126 |
-
outputs=[o], queue=True, show_api=False)
|
127 |
-
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
128 |
-
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
|
129 |
-
|
130 |
-
clear_prompt.click(lambda: None, None, [prompt], queue=False, show_api=False)
|
131 |
-
clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
|
132 |
-
recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
|
133 |
-
[positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
|
134 |
-
|
135 |
-
random_prompt.click(
|
136 |
-
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
137 |
-
v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
|
138 |
-
).success(
|
139 |
-
get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
|
140 |
-
).success(
|
141 |
-
convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False,
|
142 |
-
)
|
143 |
-
tagger_generate_from_image.click(
|
144 |
-
lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
|
145 |
-
).success(
|
146 |
-
predict_tags_wd,
|
147 |
-
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
|
148 |
-
[v2_series, v2_character, prompt, v2_copy],
|
149 |
-
show_api=False,
|
150 |
-
).success(
|
151 |
-
predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
|
152 |
-
).success(
|
153 |
-
remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
|
154 |
-
).success(
|
155 |
-
convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
|
156 |
-
).success(
|
157 |
-
insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
158 |
-
).success(
|
159 |
-
compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False,
|
160 |
-
)
|
161 |
|
162 |
-
|
163 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import io
|
4 |
+
import random
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
from PIL import Image
|
8 |
+
from deep_translator import GoogleTranslator
|
9 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Project by Nymbo
|
12 |
|
13 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
14 |
+
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
15 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
16 |
+
timeout = 100
|
17 |
+
|
18 |
+
def query(prompt, negative_prompt, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=512, height=512):
|
19 |
+
if not prompt:
|
20 |
+
return None
|
21 |
+
|
22 |
+
key = random.randint(0, 999)
|
23 |
+
|
24 |
+
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
25 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
26 |
+
|
27 |
+
prompt_translated = GoogleTranslator(source='auto', target='en').translate(prompt)
|
28 |
+
print(f'\033[1mGeneration {key} translation:\033[0m {prompt_translated}')
|
29 |
+
|
30 |
+
full_prompt = f"{prompt_translated} | ultra detail, ultra elaboration, ultra quality, perfect."
|
31 |
+
print(f'\033[1mGeneration {key}:\033[0m {full_prompt}')
|
32 |
+
|
33 |
+
# Use a random seed if seed is -1
|
34 |
+
seed_value = seed if seed != -1 else random.randint(1, 1000000000)
|
35 |
+
|
36 |
+
payload = {
|
37 |
+
"inputs": full_prompt,
|
38 |
+
"negative_prompt": negative_prompt,
|
39 |
+
"steps": steps,
|
40 |
+
"cfg_scale": cfg_scale,
|
41 |
+
"seed": seed_value,
|
42 |
+
"strength": strength,
|
43 |
+
"width": width,
|
44 |
+
"height": height,
|
45 |
+
"sampler": sampler
|
46 |
+
}
|
47 |
+
|
48 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
49 |
+
if response.status_code != 200:
|
50 |
+
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
51 |
+
print(f"Response content: {response.text}")
|
52 |
+
if response.status_code == 503:
|
53 |
+
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
54 |
+
raise gr.Error(f"{response.status_code}")
|
55 |
+
|
56 |
+
try:
|
57 |
+
image_bytes = response.content
|
58 |
+
image = Image.open(io.BytesIO(image_bytes))
|
59 |
+
print(f'\033[1mGeneration {key} completed!\033[0m ({full_prompt})')
|
60 |
+
return image
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error when trying to open the image: {e}")
|
63 |
+
return None
|
64 |
|
65 |
css = """
|
66 |
+
#app-container {
|
67 |
+
max-width: 600px;
|
68 |
+
margin-left: auto;
|
69 |
+
margin-right: auto;
|
70 |
+
}
|
71 |
"""
|
72 |
|
73 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
74 |
+
gr.HTML("<center><h1>FLUX.1-Schnell</h1></center>")
|
75 |
+
with gr.Column(elem_id="app-container"):
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column(elem_id="prompt-container"):
|
78 |
+
with gr.Row():
|
79 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
with gr.Row():
|
81 |
+
with gr.Accordion("Advanced Settings", open=False):
|
82 |
+
negative_prompt = gr.Textbox(
|
83 |
+
label="Negative Prompt",
|
84 |
+
placeholder="What should not be in the image",
|
85 |
+
value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos",
|
86 |
+
lines=3,
|
87 |
+
elem_id="negative-prompt-text-input"
|
88 |
+
)
|
89 |
+
steps = gr.Slider(label="Sampling steps", value=30, minimum=1, maximum=100, step=1)
|
90 |
+
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=0.5)
|
91 |
+
method = gr.Radio(
|
92 |
+
label="Sampling method",
|
93 |
+
value="DPM++ 2M Karras",
|
94 |
+
choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]
|
95 |
+
)
|
96 |
+
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.01)
|
97 |
+
seed = gr.Number(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
98 |
+
width = gr.Number(label="Width", value=512, minimum=64, maximum=1024, step=64)
|
99 |
+
height = gr.Number(label="Height", value=512, minimum=64, maximum=1024, step=64)
|
100 |
+
|
101 |
with gr.Row():
|
102 |
+
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
103 |
+
with gr.Row():
|
104 |
+
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
105 |
+
|
106 |
+
text_button.click(
|
107 |
+
query,
|
108 |
+
inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height],
|
109 |
+
outputs=image_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
app.launch(show_api=False, share=False)
|
|