import gradio as gr
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics3-8b-new")

model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/idefics3-8b-new", 
        torch_dtype=torch.bfloat16,
        #_attn_implementation="flash_attention_2",
        trust_remote_code=True).to("cuda")

BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
EOS_WORDS_IDS = [processor.tokenizer.eos_token_id]

#@spaces.GPU
def model_inference(
    images, text, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
):
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")

    if text == "" and images:
        gr.Error("Please input a text query along the image(s).")

    if isinstance(images, Image.Image):
        images = [images]

    if isinstance(text, str):
        text = "<image>" + text
        text = [text]

    inputs = processor(text=text, images=images, padding=True, return_tensors="pt").to("cuda")
    print("inputs",inputs)

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        do_sample = False
    elif decoding_strategy == "Top P Sampling":
        do_sample = True

    # Generate
    
    generated_ids = model.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=max_new_tokens,
                                temperature=temperature, do_sample=do_sample, repetition_penalty=repetition_penalty,
                                top_p=top_p),
    generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
    #generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
    print("INPUT:", text, "|OUTPUT:", generated_texts)
    return generated_texts[0]


with gr.Blocks(fill_height=True) as demo:
    gr.Markdown("## IDEFICS2Llama 🐶")
    gr.Markdown("Play with [IDEFICS2Llama](https://huggingface.co/HuggingFaceM4/idefics2-8b) in this demo. To get started, upload an image and text or try one of the examples.")
    gr.Markdown("**Important note**: This model is not made for chatting, the chatty IDEFICS2 will be released in the upcoming days. **This model is very strong on various tasks, including visual question answering, document retrieval and more, you can see it through the examples.**")
    gr.Markdown("Learn more about IDEFICS2 in this [blog post](https://huggingface.co/blog/idefics2).")


    with gr.Column():
        image_input = gr.Image(label="Upload your Image", type="pil")
        query_input = gr.Textbox(label="Prompt")
        submit_btn = gr.Button("Submit")
        output = gr.Textbox(label="Output")

    with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
        examples=[["example_images/travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/dummy_pdf.png", "How much percent is the order status?", "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.", "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/s2w_example.png", "What is this UI about?", "Greedy", 0.4, 512, 1.2, 0.8]]

        # Hyper-parameters for generation
        max_new_tokens = gr.Slider(
              minimum=8,
              maximum=1024,
              value=512,
              step=1,
              interactive=True,
              label="Maximum number of new tokens to generate",
          )
        repetition_penalty = gr.Slider(
              minimum=0.01,
              maximum=5.0,
              value=1.2,
              step=0.01,
              interactive=True,
              label="Repetition penalty",
              info="1.0 is equivalent to no penalty",
          )
        temperature = gr.Slider(
              minimum=0.0,
              maximum=5.0,
              value=0.4,
              step=0.1,
              interactive=True,
              label="Sampling temperature",
              info="Higher values will produce more diverse outputs.",
          )
        top_p = gr.Slider(
              minimum=0.01,
              maximum=0.99,
              value=0.8,
              step=0.01,
              interactive=True,
              label="Top P",
              info="Higher values is equivalent to sampling more low-probability tokens.",
          )
        decoding_strategy = gr.Radio(
              [
                  "Greedy",
                  "Top P Sampling",
              ],
              value="Greedy",
              label="Decoding strategy",
              interactive=True,
              info="Higher values is equivalent to sampling more low-probability tokens.",
          )
        decoding_strategy.change(
              fn=lambda selection: gr.Slider(
                  visible=(
                      selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                  )
              ),
              inputs=decoding_strategy,
              outputs=temperature,
          )

        decoding_strategy.change(
              fn=lambda selection: gr.Slider(
                  visible=(
                      selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                  )
              ),
              inputs=decoding_strategy,
              outputs=repetition_penalty,
          )
        decoding_strategy.change(
              fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
              inputs=decoding_strategy,
              outputs=top_p,
          )
        gr.Examples(
                        examples = examples,
                        inputs=[image_input, query_input, decoding_strategy, temperature,
                                                              max_new_tokens, repetition_penalty, top_p],
                        outputs=output,
                        fn=model_inference
                    )

        submit_btn.click(model_inference, inputs = [image_input, query_input, decoding_strategy, temperature,
                                                      max_new_tokens, repetition_penalty, top_p], outputs=output)


demo.launch(debug=True)