from __future__ import annotations from functools import partial from contextlib import nullcontext from typing import List, Tuple from math import ceil import torch as T import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from torch import Tensor, int32 from torch.amp import autocast from einops import rearrange, pack, unpack from utils import si_module, exists, default, maybe @si_module class GaussianMixtureIOLayer(nn.Module): class Config: latent_dim: int dim: int num_components: int def __init__(self, c: Config): super().__init__() self.latent_dim = c.latent_dim self.num_components = c.num_components self.input_projection = nn.Linear(c.latent_dim, c.dim) self.fc_loc = nn.Linear(c.dim, c.num_components * c.latent_dim) self.fc_scale = nn.Linear(c.dim, c.num_components * c.latent_dim) self.fc_weight = nn.Linear(c.dim, c.num_components) def _square_plus(self, x): return (x + T.sqrt(T.square(x) + 4)) / 2 def input(self, sampled_latents: T.Tensor) -> T.Tensor: """Pre-sampled latents T.Tensor (B, L, Z) -> float tensor (B, L, D)""" hidden = self.input_projection(sampled_latents) return hidden def output(self, h: T.Tensor) -> Tuple[T.Tensor, T.Tensor, T.Tensor]: """float tensor (B, L, D) -> Tuple of locs, scales, and weights""" batch_size, seq_len, _ = h.shape locs = self.fc_loc(h).view(batch_size, seq_len, self.num_components, self.latent_dim) scales = T.clamp(self._square_plus(self.fc_scale(h)), min=1e-6).view(batch_size, seq_len, self.num_components, self.latent_dim) weights = self.fc_weight(h).view(batch_size, seq_len, self.num_components) return (locs, scales, weights) def loss(self, data, dataHat): locs, scales, weights = dataHat log_probs = -0.5 * T.sum( (data.unsqueeze(-2) - locs).pow(2) / scales.pow(2) + 2 * T.log(scales) + T.log(T.tensor(2 * T.pi)), dim=-1 ) log_weights = F.log_softmax(weights, dim=-1) return -T.logsumexp(log_weights + log_probs, dim=-1) def temp_sample(self, orig_pdist, temp): locs, scales, weights = orig_pdist if temp is None: component_samples = locs + scales * T.randn_like(scales) mixture_samples = F.gumbel_softmax(weights, hard=True) sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2) elif isinstance(temp, tuple): assert len(temp) == 2 categorical_temp, gaussian_temp = temp component_samples = locs + scales * gaussian_temp * T.randn_like(scales) mixture_samples = F.gumbel_softmax(weights / categorical_temp, hard=True) sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2) else: component_samples = locs + scales * temp * T.randn_like(scales) mixture_samples = F.gumbel_softmax(weights / temp, hard=True) sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2) return sampled class GPTOutput(nn.Module): def __init__(self, dim, vocab_size): super().__init__() self.output = nn.Linear(dim, vocab_size, bias=False) def forward(self, x): return self.output(x) # helper functions def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def first(l): return l[0] def round_up_multiple(num, mult): return ceil(num / mult) * mult def get_code_utilization(codes, codebook_size, get_global=False): if get_global and dist.is_initialized(): world_size = dist.get_world_size() else: world_size = 1 if world_size > 1: gathered_tokens = [T.zeros_like(codes) for _ in range(world_size)] dist.all_gather(gathered_tokens, codes) gathered_tokens = T.cat(gathered_tokens, dim=0) else: gathered_tokens = codes unique_tokens = len(T.unique(gathered_tokens)) code_utilization = unique_tokens / min(gathered_tokens.numel(), codebook_size) return code_utilization # tensor helpers def round_ste(z: Tensor) -> Tensor: """Round with straight through gradients.""" zhat = z.round() return z + (zhat - z).detach() # main class # lucidrains fsq @si_module class FSQ(nn.Module): @property def needs_float32_params(self): return True class Config: levels: List[int] dim: int | None = None num_codebooks: int = 1 keep_num_codebooks_dim: bool | None = None scale: float | None = None allowed_dtypes: Tuple[str, ...] = ('float32', 'float64') channel_first: bool = False projection_has_bias: bool = True return_indices: bool = True force_quantization_f32: bool = True use_rms: bool = False def __init__(self, c: Config): super().__init__() _levels = T.tensor(c.levels, dtype=int32) self.register_buffer("_levels", _levels, persistent = False) _basis = T.cumprod(T.tensor([1] + c.levels[:-1]), dim=0, dtype=int32) self.register_buffer("_basis", _basis, persistent = False) self.scale = c.scale codebook_dim = len(c.levels) self.codebook_dim = codebook_dim effective_codebook_dim = codebook_dim * c.num_codebooks self.num_codebooks = c.num_codebooks self.allowed_dtypes = [] for dtype_str in c.allowed_dtypes: if hasattr(T, dtype_str): self.allowed_dtypes.append(getattr(T, dtype_str)) else: raise ValueError(f"Invalid dtype string: {dtype_str}") self.effective_codebook_dim = effective_codebook_dim keep_num_codebooks_dim = default(c.keep_num_codebooks_dim, c.num_codebooks > 1) assert not (c.num_codebooks > 1 and not keep_num_codebooks_dim) self.keep_num_codebooks_dim = keep_num_codebooks_dim self.dim = default(c.dim, len(_levels) * c.num_codebooks) self.channel_first = c.channel_first has_projections = self.dim != effective_codebook_dim self.project_in = nn.Linear(self.dim, effective_codebook_dim, bias = c.projection_has_bias) if has_projections else nn.Identity() self.project_out = nn.Linear(effective_codebook_dim, self.dim, bias = c.projection_has_bias) if has_projections else nn.Identity() self.has_projections = has_projections self.return_indices = c.return_indices if c.return_indices: self.codebook_size = self._levels.prod().item() implicit_codebook = self._indices_to_codes(T.arange(self.codebook_size)) self.register_buffer("implicit_codebook", implicit_codebook, persistent = False) self.allowed_dtypes = c.allowed_dtypes self.force_quantization_f32 = c.force_quantization_f32 self.latent_loss = None def latent_metric(self, codes, get_global=False): return {'code_util_estimate': get_code_utilization(codes, self.codebook_size, get_global)} def repr_from_latent(self, latent): return self.indices_to_codes(latent) def bound(self, z, eps: float = 1e-3): """ Bound `z`, an array of shape (..., d). """ half_l = (self._levels - 1) * (1 + eps) / 2 offset = T.where(self._levels % 2 == 0, 0.5, 0.0) shift = (offset / half_l).atanh() return (z + shift).tanh() * half_l - offset def quantize(self, z): """ Quantizes z, returns quantized zhat, same shape as z. """ quantized = round_ste(self.bound(z)) half_width = self._levels // 2 # Renormalize to [-1, 1]. return quantized / half_width def _scale_and_shift(self, zhat_normalized): half_width = self._levels // 2 return (zhat_normalized * half_width) + half_width def _scale_and_shift_inverse(self, zhat): half_width = self._levels // 2 return (zhat - half_width) / half_width def _indices_to_codes(self, indices): level_indices = self.indices_to_level_indices(indices) codes = self._scale_and_shift_inverse(level_indices) return codes def codes_to_indices(self, zhat): """ Converts a `code` to an index in the codebook. """ assert zhat.shape[-1] == self.codebook_dim zhat = self._scale_and_shift(zhat) return (zhat * self._basis).sum(dim=-1).to(int32) def indices_to_level_indices(self, indices): """ Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings """ indices = rearrange(indices, '... -> ... 1') codes_non_centered = (indices // self._basis) % self._levels return codes_non_centered def indices_to_codes(self, indices): """ Inverse of `codes_to_indices`. """ assert exists(indices) is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim)) codes = self._indices_to_codes(indices) if self.keep_num_codebooks_dim: codes = rearrange(codes, '... c d -> ... (c d)') codes = self.project_out(codes) if is_img_or_video or self.channel_first: codes = rearrange(codes, 'b ... d -> b d ...') return codes # @autocast(device_type='cuda', enabled = False) def forward(self, z, return_codes=False): """ einstein notation b - batch n - sequence (or flattened spatial dimensions) d - feature dimension c - number of codebook dim """ is_img_or_video = z.ndim >= 4 need_move_channel_last = is_img_or_video or self.channel_first # standardize image or video into (batch, seq, dimension) if need_move_channel_last: z = rearrange(z, 'b d ... -> b ... d') z, ps = pack_one(z, 'b * d') assert z.shape[-1] == self.dim, f'expected dimension of {self.dim} but found dimension of {z.shape[-1]}' z = self.project_in(z) z = rearrange(z, 'b n (c d) -> b n c d', c = self.num_codebooks) # whether to force quantization step to be full precision or not force_f32 = self.force_quantization_f32 quantization_context = partial(autocast, device_type='cuda', enabled = False) if force_f32 else nullcontext with quantization_context(): orig_dtype = z.dtype if force_f32 and orig_dtype not in self.allowed_dtypes: z = z.float() codes = self.quantize(z) # returning indices could be optional indices = None if self.return_indices: indices = self.codes_to_indices(codes) codes = rearrange(codes, 'b n c d -> b n (c d)') codes = codes.type(orig_dtype) # project out if return_codes: return codes, indices out = self.project_out(codes) # reconstitute image or video dimensions if need_move_channel_last: out = unpack_one(out, ps, 'b * d') out = rearrange(out, 'b ... d -> b d ...') indices = maybe(unpack_one)(indices, ps, 'b * c') if not self.keep_num_codebooks_dim and self.return_indices: indices = maybe(rearrange)(indices, '... 1 -> ...') # return quantized output and indices return out, indices