OmarElgammal1 commited on
Commit
20ce6e1
·
1 Parent(s): bdfb83d

Remove extra code

Browse files
Files changed (1) hide show
  1. app.py +0 -25
app.py CHANGED
@@ -13,29 +13,6 @@ encoder = {
13
  'positive':'assets/positive.jpeg'
14
  }
15
 
16
- def predict(model, text):
17
-
18
- selected_model = None
19
- with open('vectorizer.pkl', 'rb') as file:
20
- vectorizer = pickle.load(file)
21
-
22
- if 'Random Forest' == model:
23
- selected_model = "models/rf_twitter.pkl"
24
- elif 'Logistic Regression' == model:
25
- selected_model = "models/lg_twitter.pkl"
26
- elif 'Naive Bayes' == model:
27
- selected_model = "models/nb_twitter.pkl"
28
- elif 'Decision Tree' == model:
29
- selected_model = "models/dt_twitter.pkl"
30
- elif 'KNN' == model:
31
- selected_model = "models/knn_twitter.pkl"
32
- else:
33
- selected_model = "models/lg_twitter.pkl"
34
- loaded_model = load_model(selected_model)
35
- text_vector = vectorizer.transform([text])
36
- prediction = loaded_model.predict(text_vector)
37
- return encoder[prediction[0]]
38
-
39
  classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
40
  def analyze_sentiment(text):
41
  results = classifier(text,["positive","negative",'neutral'],multi_label=True)
@@ -44,7 +21,5 @@ def analyze_sentiment(text):
44
  result = results['labels'][ind]
45
  return encoder[result]
46
 
47
- # models = gr.Radio(['Random Forest', 'Logistic Regression','Naive Bayes','Decision Tree','KNN'], label="Choose model")
48
- # demo = gr.Interface(fn=predict, inputs=[models,"text"], outputs="image", title="Sentiment Analysis")
49
  demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="image", title="Sentiment Analysis")
50
  demo.launch(share=True)
 
13
  'positive':'assets/positive.jpeg'
14
  }
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
17
  def analyze_sentiment(text):
18
  results = classifier(text,["positive","negative",'neutral'],multi_label=True)
 
21
  result = results['labels'][ind]
22
  return encoder[result]
23
 
 
 
24
  demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="image", title="Sentiment Analysis")
25
  demo.launch(share=True)