Commit
·
20ce6e1
1
Parent(s):
bdfb83d
Remove extra code
Browse files
app.py
CHANGED
@@ -13,29 +13,6 @@ encoder = {
|
|
13 |
'positive':'assets/positive.jpeg'
|
14 |
}
|
15 |
|
16 |
-
def predict(model, text):
|
17 |
-
|
18 |
-
selected_model = None
|
19 |
-
with open('vectorizer.pkl', 'rb') as file:
|
20 |
-
vectorizer = pickle.load(file)
|
21 |
-
|
22 |
-
if 'Random Forest' == model:
|
23 |
-
selected_model = "models/rf_twitter.pkl"
|
24 |
-
elif 'Logistic Regression' == model:
|
25 |
-
selected_model = "models/lg_twitter.pkl"
|
26 |
-
elif 'Naive Bayes' == model:
|
27 |
-
selected_model = "models/nb_twitter.pkl"
|
28 |
-
elif 'Decision Tree' == model:
|
29 |
-
selected_model = "models/dt_twitter.pkl"
|
30 |
-
elif 'KNN' == model:
|
31 |
-
selected_model = "models/knn_twitter.pkl"
|
32 |
-
else:
|
33 |
-
selected_model = "models/lg_twitter.pkl"
|
34 |
-
loaded_model = load_model(selected_model)
|
35 |
-
text_vector = vectorizer.transform([text])
|
36 |
-
prediction = loaded_model.predict(text_vector)
|
37 |
-
return encoder[prediction[0]]
|
38 |
-
|
39 |
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
40 |
def analyze_sentiment(text):
|
41 |
results = classifier(text,["positive","negative",'neutral'],multi_label=True)
|
@@ -44,7 +21,5 @@ def analyze_sentiment(text):
|
|
44 |
result = results['labels'][ind]
|
45 |
return encoder[result]
|
46 |
|
47 |
-
# models = gr.Radio(['Random Forest', 'Logistic Regression','Naive Bayes','Decision Tree','KNN'], label="Choose model")
|
48 |
-
# demo = gr.Interface(fn=predict, inputs=[models,"text"], outputs="image", title="Sentiment Analysis")
|
49 |
demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="image", title="Sentiment Analysis")
|
50 |
demo.launch(share=True)
|
|
|
13 |
'positive':'assets/positive.jpeg'
|
14 |
}
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
17 |
def analyze_sentiment(text):
|
18 |
results = classifier(text,["positive","negative",'neutral'],multi_label=True)
|
|
|
21 |
result = results['labels'][ind]
|
22 |
return encoder[result]
|
23 |
|
|
|
|
|
24 |
demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="image", title="Sentiment Analysis")
|
25 |
demo.launch(share=True)
|