Upload files
Browse files- app.py +57 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from sentence_transformers import SentenceTransformer, util
|
| 4 |
+
|
| 5 |
+
# Load your SentenceTransformer model fine-tuned for NLI
|
| 6 |
+
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-Nli-Matryoshka")
|
| 7 |
+
|
| 8 |
+
# Define the labels for NLI
|
| 9 |
+
labels = ["contradiction", "entailment", "neutral"]
|
| 10 |
+
|
| 11 |
+
# Function to compute similarity and classify relationship
|
| 12 |
+
def predict(sentence1, sentence2):
|
| 13 |
+
sentences = [sentence1, sentence2]
|
| 14 |
+
embeddings = model.encode(sentences)
|
| 15 |
+
|
| 16 |
+
# Compute cosine similarity between the two sentences
|
| 17 |
+
similarity_score = util.pytorch_cos_sim(embeddings[0], embeddings[1])
|
| 18 |
+
|
| 19 |
+
# Placeholder logic for NLI (needs to be replaced with actual model inference)
|
| 20 |
+
# This is just an example; in reality, you need a classifier trained for NLI
|
| 21 |
+
scores = np.random.rand(3) # Replace this with actual model prediction logic
|
| 22 |
+
scores = scores / scores.sum() # Normalize to sum to 1
|
| 23 |
+
|
| 24 |
+
label_probs = {labels[i]: float(scores[i]) for i in range(len(labels))}
|
| 25 |
+
|
| 26 |
+
return {
|
| 27 |
+
"Similarity Score": similarity_score.item(),
|
| 28 |
+
"Label Probabilities": label_probs
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
# Define inputs and outputs for Gradio interface
|
| 32 |
+
inputs = [
|
| 33 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter the first sentence here...", label="Sentence 1"),
|
| 34 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter the second sentence here...", label="Sentence 2")
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
outputs = [
|
| 38 |
+
gr.outputs.Textbox(label="Similarity Score"),
|
| 39 |
+
gr.outputs.Label(num_top_classes=3, label="Label Probabilities")
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
examples = [
|
| 43 |
+
["يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.", "ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه"],
|
| 44 |
+
["الشاب نائم بينما الأم تقود ابنتها إلى الحديقة", "ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه"]
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
# Create Gradio interface
|
| 48 |
+
gr.Interface(
|
| 49 |
+
fn=predict,
|
| 50 |
+
title="Arabic Semantic Similarity and NLI with SentenceTransformers",
|
| 51 |
+
description="Compute the semantic similarity and classify the relationship between two Arabic sentences using a SentenceTransformer model.",
|
| 52 |
+
inputs=inputs,
|
| 53 |
+
examples=examples,
|
| 54 |
+
outputs=outputs,
|
| 55 |
+
cache_examples=False,
|
| 56 |
+
article="Author: Your Name. Model from Hugging Face Hub: Omartificial-Intelligence-Space/Arabic-Nli-Matryoshka",
|
| 57 |
+
).launch(debug=True, enable_queue=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
sentence-transformers
|
| 3 |
+
numpy
|
| 4 |
+
torch
|