File size: 25,618 Bytes
84a9b26
 
 
695d9ae
84a9b26
695d9ae
 
3b8313a
 
84a9b26
 
 
7095a34
84a9b26
 
 
48732e0
25e924b
7095a34
84a9b26
3b8313a
48732e0
7095a34
25e924b
3b8313a
48732e0
 
3b8313a
25e924b
3b8313a
 
 
 
 
 
 
 
89059a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7095a34
695d9ae
 
 
 
 
 
7095a34
695d9ae
7095a34
695d9ae
 
7095a34
 
 
 
 
 
 
 
 
16d67be
 
7095a34
 
16d67be
b67d31e
695d9ae
 
 
 
 
7095a34
b67d31e
 
 
 
 
 
 
 
 
 
5abd25c
b67d31e
 
 
 
 
 
 
 
 
 
 
 
7095a34
 
b67d31e
7095a34
695d9ae
 
7095a34
695d9ae
 
7095a34
695d9ae
7095a34
695d9ae
 
 
 
acc5e81
25e924b
acc5e81
25e924b
695d9ae
 
89059a4
 
046492f
 
 
695d9ae
7095a34
695d9ae
 
7095a34
48732e0
c10a203
 
 
 
 
 
 
 
 
 
 
 
 
7095a34
 
 
 
 
 
 
 
 
 
 
25e924b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695d9ae
 
 
7095a34
 
 
 
 
 
 
 
25e924b
 
 
 
 
 
 
 
 
 
 
 
 
7095a34
acc5e81
 
 
48732e0
acc5e81
7095a34
 
 
acc5e81
7095a34
acc5e81
7095a34
 
 
 
 
695d9ae
16d67be
25e924b
 
 
 
 
 
 
 
 
 
 
 
 
 
695d9ae
a758b55
 
7095a34
a758b55
 
 
 
 
7095a34
a758b55
 
695d9ae
046492f
 
 
 
 
7095a34
 
695d9ae
 
 
 
 
 
 
 
 
 
 
 
ba6f8aa
7095a34
695d9ae
 
046492f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48732e0
7095a34
695d9ae
 
046492f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48732e0
695d9ae
 
 
046492f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48732e0
046492f
 
 
 
 
 
 
 
3b8313a
 
 
 
 
 
046492f
 
 
 
48732e0
7095a34
695d9ae
 
16d67be
046492f
 
59fc1dd
 
046492f
 
 
 
48732e0
 
7095a34
695d9ae
 
ba6f8aa
48732e0
c10a203
 
 
 
 
 
 
 
695d9ae
ba6f8aa
 
 
3b8313a
 
695d9ae
 
25e924b
695d9ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba6f8aa
 
48732e0
 
25e924b
 
 
 
 
 
84a9b26
 
 
 
 
ba6f8aa
84a9b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a19191
ba6f8aa
84a9b26
 
 
 
ba6f8aa
 
695d9ae
25e924b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a9b26
 
695d9ae
25e924b
 
 
16d67be
25e924b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7095a34
84a9b26
ba6f8aa
7095a34
84a9b26
 
7095a34
84a9b26
 
7095a34
84a9b26
 
7095a34
84a9b26
 
 
7095a34
84a9b26
 
 
7095a34
84a9b26
7095a34
84a9b26
48732e0
7095a34
84a9b26
48732e0
7095a34
84a9b26
48732e0
7095a34
84a9b26
48732e0
695d9ae
ba6f8aa
 
 
14f8792
 
25e924b
 
14f8792
 
 
 
 
8725334
bf7f0fc
16d67be
25e924b
14f8792
 
 
 
89059a4
695d9ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import base64
import io
import json
import os
import random
import tempfile
import time
import threading
from queue import Queue

import librosa
import numpy as np
import pandas as pd
import requests
import streamlit as st
from audio_recorder_streamlit import audio_recorder
import torchaudio
from dotenv import load_dotenv

from logger import logger
from utils import fs
from enums import SAVE_PATH, ELO_JSON_PATH, ELO_CSV_PATH, EMAIL_PATH, TEMP_DIR, NEW_TASK_URL,ARENA_PATH

load_dotenv()
result_queue = Queue()
random_df = pd.read_csv("random_audios.csv")
random_paths = random_df["path"].tolist()


def result_writer_thread():
    result_writer = ResultWriter(SAVE_PATH)
    while True:
        result_input = result_queue.get()
        result_writer.write_result(**result_input)
        result_queue.task_done()


def create_files():
    if not fs.exists(SAVE_PATH):
        logger.info("Creating save file")
        with fs.open(SAVE_PATH, 'wb') as f:
            headers = [
            'email',
            'path',
            'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
            'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
            'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration'
        ]
            df = pd.DataFrame(columns=headers)
            df.to_csv(f, index=False)

    if not fs.exists(ELO_JSON_PATH):
        logger.info("Creating Elo json file")
        with fs.open(ELO_JSON_PATH, 'w') as f:
            models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
            models = {model: 1000 for model in models}
            json.dump(models, f)

    if not fs.exists(ELO_CSV_PATH):
        logger.info("Creating Elo csv file")
        with fs.open(ELO_CSV_PATH, 'wb') as f:
            models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
            models = {k:1000 for k in models}
            df = pd.DataFrame(models,index=[0])
            df.to_csv(f, index=False)

    if not fs.exists(EMAIL_PATH):
        logger.info("Creating email file")
        with fs.open(EMAIL_PATH, 'wb') as f:
            existing_content = ''
            new_content = existing_content
            with fs.open(EMAIL_PATH, 'w') as f:
                f.write(new_content.encode('utf-8'))

def write_email(email):
        if fs.exists(EMAIL_PATH):
            with fs.open(EMAIL_PATH, 'rb') as f:
                existing_content = f.read().decode('utf-8')
        else:
            existing_content = ''

        new_content = existing_content + email + '\n'

        with fs.open(EMAIL_PATH, 'wb') as f:
            f.write(new_content.encode('utf-8'))

class ResultWriter:
    def __init__(self, save_path):
        self.save_path = save_path
        self.headers = [
            'email',
            'path',
            'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
            'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
            'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration',
            'sarvam_score','sarvam_appearance','sarvam_duration',
        ]

        self.models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure','sarvam']

        if not fs.exists(save_path):
            print("CSV File not found in s3 bucket creating a new one",save_path)
            with fs.open(save_path, 'wb') as f:
                df = pd.DataFrame(columns=self.headers)
                df.to_csv(f, index=False)

    def write_result(self,
                    user_email,
                    audio_path,
                    option_1_duration_info,
                    option_2_duration_info,
                    winner_model=None,
                    loser_model=None,
                    both_preferred=False,
                    none_preferred=False
                    ):

        payload = {
            "task":"write_result",
            "payload":{
                "winner_model":winner_model,
                "loser_model":loser_model,
                "both_preferred":both_preferred,
                "none_preferred":none_preferred,
                "user_email":user_email,
                "audio_path":audio_path,
                "option_1_duration_info":option_1_duration_info,
                "option_2_duration_info":option_2_duration_info
            }
        }

        send_task(payload)

def decode_audio_array(base64_string):
    bytes_data = base64.b64decode(base64_string)

    buffer = io.BytesIO(bytes_data)
    audio_array = np.load(buffer)

    return audio_array

def send_task(payload):
    header = {
        "Authorization": f"Bearer {os.getenv('CREATE_TASK_API_KEY')}"
    }
    if payload["task"] in ["fetch_audio","write_result"]:
        response = requests.post(NEW_TASK_URL,json=payload,headers=header,timeout=600)
    else:
        response = requests.post(NEW_TASK_URL,json=payload,headers=header,timeout=600,stream=True)
    try:
        response = response.json()
    except Exception as e:
        logger.error("Error while sending task %s",e)
        logger.error("response received %s",response.text)
        if response.status_code == 413:
            return "Recording too long, please try again"
        return "error please try again"

    if payload["task"] == "transcribe_with_fastapi":
        return response["text"]

def fetch_audio():
    num_tries = 3
    iter_count = 0
    while iter_count <= num_tries:
        try:
            filepath = random.choice(random_paths)
            with fs.open(f"{ARENA_PATH}/{filepath}", 'rb') as f:
                audio,sr = torchaudio.load(f)
                audio = audio.numpy()
                return audio,sr,filepath
        except Exception:
            iter_count += 1

    return None,None,None

def encode_audio_array(audio_array):
    buffer = io.BytesIO()
    np.save(buffer, audio_array)
    buffer.seek(0)

    base64_bytes = base64.b64encode(buffer.read())
    base64_string = base64_bytes.decode('utf-8')

    return base64_string

def validate_uploaded_audio(uploaded_file):
    """
    Validate uploaded audio file format and duration
    Returns: (is_valid, error_message, audio_data, sample_rate)
    """
    allowed_extensions = ['.wav', '.mp3', '.flac']
    file_extension = os.path.splitext(uploaded_file.name)[1].lower()

    if file_extension not in allowed_extensions:
        return False, f"Unsupported file format. Please upload {', '.join(allowed_extensions)} files only.", None, None

    try:
        audio_bytes = uploaded_file.read()

        with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as tmp_file:
            tmp_file.write(audio_bytes)
            temp_path = tmp_file.name

            audio_data, sample_rate = librosa.load(temp_path, sr=None)
            duration = len(audio_data) / sample_rate

        if duration > 30:
            return False, f"Audio duration ({duration:.1f}s) exceeds the 30-second limit. Please upload shorter audio.", None, None

        return True, None, audio_data, sample_rate

    except Exception as e:
        return False, f"Error processing audio file: {str(e)}", None, None

def call_function(model_name):
    if st.session_state.current_audio_type == "recorded":
        y,_ = librosa.load(st.session_state.audio_path,sr=22050,mono=True)
        encoded_array = encode_audio_array(y)
        payload = {
                "task":"transcribe_with_fastapi",
                "payload":{
                    "file_path":encoded_array,
                    "model_name":model_name,
                    "audio_b64":True
                }}
    elif st.session_state.current_audio_type == "uploaded":
        array = st.session_state.audio['data']
        sr = st.session_state.audio['sample_rate']
        if sr != 22050:
            array = librosa.resample(y=array, orig_sr=sr, target_sr=22050)
        encoded_array = encode_audio_array(array)
        payload = {
                "task":"transcribe_with_fastapi",
                "payload":{
                    "file_path":encoded_array,
                    "model_name":model_name,
                    "audio_b64":True
                }}
    else:
        sr = st.session_state.audio['sample_rate']
        array = st.session_state.audio['data']
        if sr != 22050:
            array = librosa.resample(y=array,orig_sr=sr,target_sr=22050)
        encoded_array = encode_audio_array(array)
        payload = {
                "task":"transcribe_with_fastapi",
                "payload":{
                    "file_path":encoded_array,
                    "model_name":model_name,
                    "audio_b64":True
                }}

    transcript = send_task(payload)
    return transcript

def transcribe_audio():
    models_list = ["Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime","azure",'sarvam']

    if st.session_state.model_1_selection == "Random":
        model1_name = random.choice(models_list)
    else:
        model1_name = st.session_state.model_1_selection

    if st.session_state.model_2_selection == "Random":
        if st.session_state.model_1_selection == "Random":
            available_models = [m for m in models_list if m != model1_name]
            model2_name = random.choice(available_models)
        else:
            model2_name = random.choice(models_list)
    else:
        model2_name = st.session_state.model_2_selection

    st.session_state.option_1_model_name = model1_name
    st.session_state.option_2_model_name = model2_name

    time_1 = time.time()
    transcript1 = call_function(model1_name)
    time_2 = time.time()
    transcript2 = call_function(model2_name)
    time_3 = time.time()

    st.session_state.option_2_response_time = round(time_3 - time_2,3)
    st.session_state.option_1_response_time = round(time_2 - time_1,3)

    if transcript1 == "nan":
        transcript1 = ""
    if transcript2 == "nan":
        transcript2 = ""

    return transcript1, transcript2

def reset_state():
        st.session_state.audio = None
        st.session_state.current_audio_type = None
        st.session_state.audio_path = ""
        st.session_state.option_selected = False
        st.session_state.transcribed = False
        st.session_state.option_2_model_name = ""
        st.session_state.option_1_model_name = ""
        st.session_state.option_1 = ""
        st.session_state.option_2 = ""
        st.session_state.option_1_model_name_state = ""
        st.session_state.option_2_model_name_state = ""
        st.session_state.has_audio = False

def on_option_1_click():
    if st.session_state.transcribed and not st.session_state.option_selected:
        with st.spinner("πŸ’Ύ Saving and loading results... please wait"):
            st.session_state.option_1_model_name_state = f"πŸ‘‘ {st.session_state.option_1_model_name} πŸ‘‘"
            st.session_state.option_2_model_name_state = f"πŸ‘Ž {st.session_state.option_2_model_name} πŸ‘Ž"
            st.session_state.choice = f"You chose Option 1. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
            result_queue.put(
                {
                    "user_email": st.session_state.user_email,
                    "audio_path": st.session_state.audio_path,
                    "winner_model": st.session_state.option_1_model_name,
                    "loser_model": st.session_state.option_2_model_name,
                    "option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
                    "option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
                }
            )
            st.session_state.option_selected = True
            st.session_state.disable_voting=True

def on_option_2_click():
    if st.session_state.transcribed and not st.session_state.option_selected:
        with st.spinner("πŸ’Ύ Saving and loading results... please wait"):
            st.session_state.option_2_model_name_state = f"πŸ‘‘ {st.session_state.option_2_model_name} πŸ‘‘"
            st.session_state.option_1_model_name_state = f"πŸ‘Ž {st.session_state.option_1_model_name} πŸ‘Ž"
            st.session_state.choice = f"You chose Option 2. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
            result_queue.put(
                {
                    "user_email": st.session_state.user_email,
                    "audio_path": st.session_state.audio_path,
                    "winner_model": st.session_state.option_2_model_name,
                    "loser_model": st.session_state.option_1_model_name,
                    "option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
                    "option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
                }
            )
            st.session_state.option_selected = True
            st.session_state.disable_voting=True

def on_option_both_click():
    if st.session_state.transcribed and not st.session_state.option_selected:
        with st.spinner("πŸ’Ύ Saving and loading results... please wait"):
            st.session_state.option_2_model_name_state = f"πŸ‘‘ {st.session_state.option_2_model_name} πŸ‘‘"
            st.session_state.option_1_model_name_state = f"πŸ‘‘ {st.session_state.option_1_model_name} πŸ‘‘"
            st.session_state.choice = f"You chose Prefer both. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
            result_queue.put(
                {
                    "user_email": st.session_state.user_email,
                    "audio_path": st.session_state.audio_path,
                    "winner_model": st.session_state.option_1_model_name,
                    "loser_model": st.session_state.option_2_model_name,
                    "option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
                    "option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
                    "both_preferred": True
                }
            )
            st.session_state.option_selected = True
            st.session_state.disable_voting=True

def on_option_none_click():
    if st.session_state.transcribed and not st.session_state.option_selected:
        with st.spinner("πŸ’Ύ Saving and loading results... please wait"):
            st.session_state.option_1_model_name_state = f"πŸ‘Ž {st.session_state.option_1_model_name} πŸ‘Ž"
            st.session_state.option_2_model_name_state = f"πŸ‘Ž {st.session_state.option_2_model_name} πŸ‘Ž"
            st.session_state.choice = f"You chose none option. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
            result_queue.put({
                "user_email": st.session_state.user_email,
                "audio_path": st.session_state.audio_path,
                "winner_model": st.session_state.option_1_model_name,
                "loser_model": st.session_state.option_2_model_name,
                "option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
                "option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
                "none_preferred": True
                }
            )
            st.session_state.option_selected = True
            st.session_state.disable_voting=True

def on_click_transcribe():
    if st.session_state.has_audio:
        with st.spinner("Transcribing audio... this may take some time"):
            option_1_text, option_2_text = transcribe_audio(
                    )
            st.session_state.option_1 = option_1_text if option_1_text else "* inaudible *"
            st.session_state.option_2 = option_2_text if option_2_text else "* inaudible *"
            st.session_state.transcribed = True
            st.session_state.option_1_model_name_state = ""
            st.session_state.option_2_model_name_state = ""
            st.session_state.option_selected = None
            st.session_state.recording=True
            st.session_state.disable_voting=False

def on_random_click():
    reset_state()
    with st.spinner("Fetching random audio... please wait"):
        array, sampling_rate, filepath = fetch_audio()
        if filepath is None:
            st.error("Error in fetching random audio please try uploading an audio or using the mic")
        else:
            st.session_state.audio = {"data":array,"sample_rate":sampling_rate,"format":"audio/wav"}
            st.session_state.has_audio = True
            st.session_state.current_audio_type = "random"
            st.session_state.audio_path = filepath
            st.session_state.option_selected = None

def on_reset_click():
    reset_state()

writer_thread = threading.Thread(target=result_writer_thread)
writer_thread.start()

def main():
    st.set_page_config(layout="wide",initial_sidebar_state="collapsed")
    st.title("βš”οΈ Ori Speech-To-Text Arena βš”οΈ")

    if "has_audio" not in st.session_state:
        st.session_state.has_audio = False
    if "audio" not in st.session_state:
        st.session_state.audio = None
    if "audio_path" not in st.session_state:
        st.session_state.audio_path = ""
    if "option_1" not in st.session_state:
        st.session_state.option_1 = ""
    if "option_2" not in st.session_state:
        st.session_state.option_2 = ""
    if "transcribed" not in st.session_state:
        st.session_state.transcribed = False
    if "option_1_model_name_state" not in st.session_state:
        st.session_state.option_1_model_name_state = ""
    if "option_1_model_name" not in st.session_state:
        st.session_state.option_1_model_name = ""
    if "option_2_model_name" not in st.session_state:
        st.session_state.option_2_model_name = ""
    if "option_2_model_name_state" not in st.session_state:
        st.session_state.option_2_model_name_state = ""
    if "user_email" not in st.session_state:
        st.session_state.user_email = ""
    if "recording" not in st.session_state:
        st.session_state.recording = True
    if "disable_voting" not in st.session_state:
        st.session_state.disable_voting = True
    if "model_1_selection" not in st.session_state:
        st.session_state.model_1_selection = "Random"
    if "model_2_selection" not in st.session_state:
        st.session_state.model_2_selection = "Random"

    col1, col2, col3 = st.columns([1, 1, 1])

    with col1:
        st.markdown("### Record Audio")
        with st.container():
            audio_bytes = audio_recorder(
                text="Click microphone to start/stop recording",
                pause_threshold=3,
                icon_size="2x",
                key="audio_recorder",
                sample_rate=16_000
            )
        if audio_bytes and audio_bytes != st.session_state.get('last_recorded_audio'):
            reset_state()
            st.session_state.last_recorded_audio = audio_bytes
            st.session_state.audio = {"data":audio_bytes,"format":"audio/wav"}
            st.session_state.current_audio_type = "recorded"
            st.session_state.has_audio = True
            with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
                tmp_file.write(audio_bytes)
                os.makedirs(TEMP_DIR, exist_ok=True)
            st.session_state.audio_path = tmp_file.name
            st.session_state.option_selected = None
            st.toast("Audio recorded successfully",icon="🎀")
            st.session_state.recording = False

    with col2:
        st.markdown("### Random Audio Example")
        with st.container():
            st.button("🎲 Select Random Audio",on_click=on_random_click,key="random_btn")
            st.session_state.recording = False

    with col3:
        st.markdown("### Upload Audio File")
        with st.container():
            uploaded_file = st.file_uploader(
                "Choose an audio file",
                type=['wav', 'mp3', 'flac'],
                key="audio_uploader",
                help="Upload .wav, .mp3, or .flac files (max 30 seconds)"
            )

            if uploaded_file is not None:
                if uploaded_file != st.session_state.get('last_uploaded_file'):
                    st.session_state.last_uploaded_file = uploaded_file

                    with st.spinner("Processing uploaded audio..."):
                        is_valid, error_msg, audio_data, sample_rate = validate_uploaded_audio(uploaded_file)

                        if is_valid:
                            reset_state()

                            with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
                                tmp_file.write(uploaded_file.getvalue())
                                temp_path = tmp_file.name

                            st.session_state.audio = {
                                "data": audio_data,
                                "sample_rate": sample_rate,
                                "format": "audio/wav"
                            }
                            st.session_state.current_audio_type = "uploaded"
                            st.session_state.has_audio = True
                            st.session_state.audio_path = temp_path
                            st.session_state.option_selected = None
                            st.session_state.recording = False

                            duration = len(audio_data) / sample_rate
                            st.success(f"βœ… Audio uploaded successfully! Duration: {duration:.1f}s")
                        else:
                            st.error(f"❌ {error_msg}")

    if st.session_state.has_audio:
        st.audio(**st.session_state.audio)

    st.markdown("### Model Selection")
    col_model1, col_model2 = st.columns(2)

    models_list = ["Random", "Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime", "azure","sarvam"]

    with col_model1:
        st.selectbox(
            "Model 1:",
            options=models_list,
            index=0,
            key="model_1_selection"
        )

    with col_model2:
        st.selectbox(
            "Model 2:",
            options=models_list,
            index=0,
            key="model_2_selection"
        )

    with st.container():
        st.button("πŸ“ Transcribe Audio",on_click=on_click_transcribe,use_container_width=True,key="transcribe_btn",disabled=st.session_state.recording)

    text_containers = st.columns([1, 1])
    name_containers = st.columns([1, 1])

    with text_containers[0]:
        st.text_area("Option 1", value=st.session_state.option_1, height=300)

    with text_containers[1]:
        st.text_area("Option 2", value=st.session_state.option_2, height=300)

    with name_containers[0]:
        if st.session_state.option_1_model_name_state:
            st.markdown(f"<div style='text-align: center'>{st.session_state.option_1_model_name_state}</div>", unsafe_allow_html=True)

    with name_containers[1]:
        if st.session_state.option_2_model_name_state:
            st.markdown(f"<div style='text-align: center'>{st.session_state.option_2_model_name_state}</div>", unsafe_allow_html=True)

    c1, c2, c3, c4 = st.columns(4)

    with c1:
        st.button("Prefer Option 1",on_click=on_option_1_click,key="option1_btn",disabled=st.session_state.disable_voting)

    with c2:
        st.button("Prefer Option 2",on_click=on_option_2_click,key="option2_btn",disabled=st.session_state.disable_voting)

    with c3:
        st.button("Prefer Both",on_click=on_option_both_click,key="both_btn",disabled=st.session_state.disable_voting)

    with c4:
        st.button("Prefer None",on_click=on_option_none_click,key="none_btn",disabled=st.session_state.disable_voting)

    with st.container():
        st.button("New Match",on_click=on_reset_click,key="reset_btn",use_container_width=True)

    INSTR = """
    ## Instructions:
    * Record audio to recognise speech, upload an audio file, or press 🎲 for random Audio.
    * Optionally select specific models using the Model 1 and Model 2 dropdowns (default is Random).
    * Click on transcribe audio button to commence the transcription process.
    * Read the two options one after the other while listening to the audio.
    * Vote on which transcript you prefer.
    * Note:
        * Model names are revealed after the vote is cast.
        * Currently Hindi and English are supported, and
            the results for Hindi will be in Hinglish (Hindi in Latin script)
        * It may take up to 30-60 seconds for speech recognition in some cases.
        * Uploaded audio files must be .wav, .mp3, or .flac format and under 30 seconds duration.
    """.strip()

    st.markdown(INSTR)

create_files()
main()