File size: 25,618 Bytes
84a9b26 695d9ae 84a9b26 695d9ae 3b8313a 84a9b26 7095a34 84a9b26 48732e0 25e924b 7095a34 84a9b26 3b8313a 48732e0 7095a34 25e924b 3b8313a 48732e0 3b8313a 25e924b 3b8313a 89059a4 7095a34 695d9ae 7095a34 695d9ae 7095a34 695d9ae 7095a34 16d67be 7095a34 16d67be b67d31e 695d9ae 7095a34 b67d31e 5abd25c b67d31e 7095a34 b67d31e 7095a34 695d9ae 7095a34 695d9ae 7095a34 695d9ae 7095a34 695d9ae acc5e81 25e924b acc5e81 25e924b 695d9ae 89059a4 046492f 695d9ae 7095a34 695d9ae 7095a34 48732e0 c10a203 7095a34 25e924b 695d9ae 7095a34 25e924b 7095a34 acc5e81 48732e0 acc5e81 7095a34 acc5e81 7095a34 acc5e81 7095a34 695d9ae 16d67be 25e924b 695d9ae a758b55 7095a34 a758b55 7095a34 a758b55 695d9ae 046492f 7095a34 695d9ae ba6f8aa 7095a34 695d9ae 046492f 48732e0 7095a34 695d9ae 046492f 48732e0 695d9ae 046492f 48732e0 046492f 3b8313a 046492f 48732e0 7095a34 695d9ae 16d67be 046492f 59fc1dd 046492f 48732e0 7095a34 695d9ae ba6f8aa 48732e0 c10a203 695d9ae ba6f8aa 3b8313a 695d9ae 25e924b 695d9ae ba6f8aa 48732e0 25e924b 84a9b26 ba6f8aa 84a9b26 3a19191 ba6f8aa 84a9b26 ba6f8aa 695d9ae 25e924b 84a9b26 695d9ae 25e924b 16d67be 25e924b 7095a34 84a9b26 ba6f8aa 7095a34 84a9b26 7095a34 84a9b26 7095a34 84a9b26 7095a34 84a9b26 7095a34 84a9b26 7095a34 84a9b26 7095a34 84a9b26 48732e0 7095a34 84a9b26 48732e0 7095a34 84a9b26 48732e0 7095a34 84a9b26 48732e0 695d9ae ba6f8aa 14f8792 25e924b 14f8792 8725334 bf7f0fc 16d67be 25e924b 14f8792 89059a4 695d9ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import base64
import io
import json
import os
import random
import tempfile
import time
import threading
from queue import Queue
import librosa
import numpy as np
import pandas as pd
import requests
import streamlit as st
from audio_recorder_streamlit import audio_recorder
import torchaudio
from dotenv import load_dotenv
from logger import logger
from utils import fs
from enums import SAVE_PATH, ELO_JSON_PATH, ELO_CSV_PATH, EMAIL_PATH, TEMP_DIR, NEW_TASK_URL,ARENA_PATH
load_dotenv()
result_queue = Queue()
random_df = pd.read_csv("random_audios.csv")
random_paths = random_df["path"].tolist()
def result_writer_thread():
result_writer = ResultWriter(SAVE_PATH)
while True:
result_input = result_queue.get()
result_writer.write_result(**result_input)
result_queue.task_done()
def create_files():
if not fs.exists(SAVE_PATH):
logger.info("Creating save file")
with fs.open(SAVE_PATH, 'wb') as f:
headers = [
'email',
'path',
'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration'
]
df = pd.DataFrame(columns=headers)
df.to_csv(f, index=False)
if not fs.exists(ELO_JSON_PATH):
logger.info("Creating Elo json file")
with fs.open(ELO_JSON_PATH, 'w') as f:
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
models = {model: 1000 for model in models}
json.dump(models, f)
if not fs.exists(ELO_CSV_PATH):
logger.info("Creating Elo csv file")
with fs.open(ELO_CSV_PATH, 'wb') as f:
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
models = {k:1000 for k in models}
df = pd.DataFrame(models,index=[0])
df.to_csv(f, index=False)
if not fs.exists(EMAIL_PATH):
logger.info("Creating email file")
with fs.open(EMAIL_PATH, 'wb') as f:
existing_content = ''
new_content = existing_content
with fs.open(EMAIL_PATH, 'w') as f:
f.write(new_content.encode('utf-8'))
def write_email(email):
if fs.exists(EMAIL_PATH):
with fs.open(EMAIL_PATH, 'rb') as f:
existing_content = f.read().decode('utf-8')
else:
existing_content = ''
new_content = existing_content + email + '\n'
with fs.open(EMAIL_PATH, 'wb') as f:
f.write(new_content.encode('utf-8'))
class ResultWriter:
def __init__(self, save_path):
self.save_path = save_path
self.headers = [
'email',
'path',
'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration',
'sarvam_score','sarvam_appearance','sarvam_duration',
]
self.models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure','sarvam']
if not fs.exists(save_path):
print("CSV File not found in s3 bucket creating a new one",save_path)
with fs.open(save_path, 'wb') as f:
df = pd.DataFrame(columns=self.headers)
df.to_csv(f, index=False)
def write_result(self,
user_email,
audio_path,
option_1_duration_info,
option_2_duration_info,
winner_model=None,
loser_model=None,
both_preferred=False,
none_preferred=False
):
payload = {
"task":"write_result",
"payload":{
"winner_model":winner_model,
"loser_model":loser_model,
"both_preferred":both_preferred,
"none_preferred":none_preferred,
"user_email":user_email,
"audio_path":audio_path,
"option_1_duration_info":option_1_duration_info,
"option_2_duration_info":option_2_duration_info
}
}
send_task(payload)
def decode_audio_array(base64_string):
bytes_data = base64.b64decode(base64_string)
buffer = io.BytesIO(bytes_data)
audio_array = np.load(buffer)
return audio_array
def send_task(payload):
header = {
"Authorization": f"Bearer {os.getenv('CREATE_TASK_API_KEY')}"
}
if payload["task"] in ["fetch_audio","write_result"]:
response = requests.post(NEW_TASK_URL,json=payload,headers=header,timeout=600)
else:
response = requests.post(NEW_TASK_URL,json=payload,headers=header,timeout=600,stream=True)
try:
response = response.json()
except Exception as e:
logger.error("Error while sending task %s",e)
logger.error("response received %s",response.text)
if response.status_code == 413:
return "Recording too long, please try again"
return "error please try again"
if payload["task"] == "transcribe_with_fastapi":
return response["text"]
def fetch_audio():
num_tries = 3
iter_count = 0
while iter_count <= num_tries:
try:
filepath = random.choice(random_paths)
with fs.open(f"{ARENA_PATH}/{filepath}", 'rb') as f:
audio,sr = torchaudio.load(f)
audio = audio.numpy()
return audio,sr,filepath
except Exception:
iter_count += 1
return None,None,None
def encode_audio_array(audio_array):
buffer = io.BytesIO()
np.save(buffer, audio_array)
buffer.seek(0)
base64_bytes = base64.b64encode(buffer.read())
base64_string = base64_bytes.decode('utf-8')
return base64_string
def validate_uploaded_audio(uploaded_file):
"""
Validate uploaded audio file format and duration
Returns: (is_valid, error_message, audio_data, sample_rate)
"""
allowed_extensions = ['.wav', '.mp3', '.flac']
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
if file_extension not in allowed_extensions:
return False, f"Unsupported file format. Please upload {', '.join(allowed_extensions)} files only.", None, None
try:
audio_bytes = uploaded_file.read()
with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as tmp_file:
tmp_file.write(audio_bytes)
temp_path = tmp_file.name
audio_data, sample_rate = librosa.load(temp_path, sr=None)
duration = len(audio_data) / sample_rate
if duration > 30:
return False, f"Audio duration ({duration:.1f}s) exceeds the 30-second limit. Please upload shorter audio.", None, None
return True, None, audio_data, sample_rate
except Exception as e:
return False, f"Error processing audio file: {str(e)}", None, None
def call_function(model_name):
if st.session_state.current_audio_type == "recorded":
y,_ = librosa.load(st.session_state.audio_path,sr=22050,mono=True)
encoded_array = encode_audio_array(y)
payload = {
"task":"transcribe_with_fastapi",
"payload":{
"file_path":encoded_array,
"model_name":model_name,
"audio_b64":True
}}
elif st.session_state.current_audio_type == "uploaded":
array = st.session_state.audio['data']
sr = st.session_state.audio['sample_rate']
if sr != 22050:
array = librosa.resample(y=array, orig_sr=sr, target_sr=22050)
encoded_array = encode_audio_array(array)
payload = {
"task":"transcribe_with_fastapi",
"payload":{
"file_path":encoded_array,
"model_name":model_name,
"audio_b64":True
}}
else:
sr = st.session_state.audio['sample_rate']
array = st.session_state.audio['data']
if sr != 22050:
array = librosa.resample(y=array,orig_sr=sr,target_sr=22050)
encoded_array = encode_audio_array(array)
payload = {
"task":"transcribe_with_fastapi",
"payload":{
"file_path":encoded_array,
"model_name":model_name,
"audio_b64":True
}}
transcript = send_task(payload)
return transcript
def transcribe_audio():
models_list = ["Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime","azure",'sarvam']
if st.session_state.model_1_selection == "Random":
model1_name = random.choice(models_list)
else:
model1_name = st.session_state.model_1_selection
if st.session_state.model_2_selection == "Random":
if st.session_state.model_1_selection == "Random":
available_models = [m for m in models_list if m != model1_name]
model2_name = random.choice(available_models)
else:
model2_name = random.choice(models_list)
else:
model2_name = st.session_state.model_2_selection
st.session_state.option_1_model_name = model1_name
st.session_state.option_2_model_name = model2_name
time_1 = time.time()
transcript1 = call_function(model1_name)
time_2 = time.time()
transcript2 = call_function(model2_name)
time_3 = time.time()
st.session_state.option_2_response_time = round(time_3 - time_2,3)
st.session_state.option_1_response_time = round(time_2 - time_1,3)
if transcript1 == "nan":
transcript1 = ""
if transcript2 == "nan":
transcript2 = ""
return transcript1, transcript2
def reset_state():
st.session_state.audio = None
st.session_state.current_audio_type = None
st.session_state.audio_path = ""
st.session_state.option_selected = False
st.session_state.transcribed = False
st.session_state.option_2_model_name = ""
st.session_state.option_1_model_name = ""
st.session_state.option_1 = ""
st.session_state.option_2 = ""
st.session_state.option_1_model_name_state = ""
st.session_state.option_2_model_name_state = ""
st.session_state.has_audio = False
def on_option_1_click():
if st.session_state.transcribed and not st.session_state.option_selected:
with st.spinner("πΎ Saving and loading results... please wait"):
st.session_state.option_1_model_name_state = f"π {st.session_state.option_1_model_name} π"
st.session_state.option_2_model_name_state = f"π {st.session_state.option_2_model_name} π"
st.session_state.choice = f"You chose Option 1. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_queue.put(
{
"user_email": st.session_state.user_email,
"audio_path": st.session_state.audio_path,
"winner_model": st.session_state.option_1_model_name,
"loser_model": st.session_state.option_2_model_name,
"option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
"option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
}
)
st.session_state.option_selected = True
st.session_state.disable_voting=True
def on_option_2_click():
if st.session_state.transcribed and not st.session_state.option_selected:
with st.spinner("πΎ Saving and loading results... please wait"):
st.session_state.option_2_model_name_state = f"π {st.session_state.option_2_model_name} π"
st.session_state.option_1_model_name_state = f"π {st.session_state.option_1_model_name} π"
st.session_state.choice = f"You chose Option 2. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_queue.put(
{
"user_email": st.session_state.user_email,
"audio_path": st.session_state.audio_path,
"winner_model": st.session_state.option_2_model_name,
"loser_model": st.session_state.option_1_model_name,
"option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
"option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
}
)
st.session_state.option_selected = True
st.session_state.disable_voting=True
def on_option_both_click():
if st.session_state.transcribed and not st.session_state.option_selected:
with st.spinner("πΎ Saving and loading results... please wait"):
st.session_state.option_2_model_name_state = f"π {st.session_state.option_2_model_name} π"
st.session_state.option_1_model_name_state = f"π {st.session_state.option_1_model_name} π"
st.session_state.choice = f"You chose Prefer both. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_queue.put(
{
"user_email": st.session_state.user_email,
"audio_path": st.session_state.audio_path,
"winner_model": st.session_state.option_1_model_name,
"loser_model": st.session_state.option_2_model_name,
"option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
"option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
"both_preferred": True
}
)
st.session_state.option_selected = True
st.session_state.disable_voting=True
def on_option_none_click():
if st.session_state.transcribed and not st.session_state.option_selected:
with st.spinner("πΎ Saving and loading results... please wait"):
st.session_state.option_1_model_name_state = f"π {st.session_state.option_1_model_name} π"
st.session_state.option_2_model_name_state = f"π {st.session_state.option_2_model_name} π"
st.session_state.choice = f"You chose none option. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_queue.put({
"user_email": st.session_state.user_email,
"audio_path": st.session_state.audio_path,
"winner_model": st.session_state.option_1_model_name,
"loser_model": st.session_state.option_2_model_name,
"option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
"option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
"none_preferred": True
}
)
st.session_state.option_selected = True
st.session_state.disable_voting=True
def on_click_transcribe():
if st.session_state.has_audio:
with st.spinner("Transcribing audio... this may take some time"):
option_1_text, option_2_text = transcribe_audio(
)
st.session_state.option_1 = option_1_text if option_1_text else "* inaudible *"
st.session_state.option_2 = option_2_text if option_2_text else "* inaudible *"
st.session_state.transcribed = True
st.session_state.option_1_model_name_state = ""
st.session_state.option_2_model_name_state = ""
st.session_state.option_selected = None
st.session_state.recording=True
st.session_state.disable_voting=False
def on_random_click():
reset_state()
with st.spinner("Fetching random audio... please wait"):
array, sampling_rate, filepath = fetch_audio()
if filepath is None:
st.error("Error in fetching random audio please try uploading an audio or using the mic")
else:
st.session_state.audio = {"data":array,"sample_rate":sampling_rate,"format":"audio/wav"}
st.session_state.has_audio = True
st.session_state.current_audio_type = "random"
st.session_state.audio_path = filepath
st.session_state.option_selected = None
def on_reset_click():
reset_state()
writer_thread = threading.Thread(target=result_writer_thread)
writer_thread.start()
def main():
st.set_page_config(layout="wide",initial_sidebar_state="collapsed")
st.title("βοΈ Ori Speech-To-Text Arena βοΈ")
if "has_audio" not in st.session_state:
st.session_state.has_audio = False
if "audio" not in st.session_state:
st.session_state.audio = None
if "audio_path" not in st.session_state:
st.session_state.audio_path = ""
if "option_1" not in st.session_state:
st.session_state.option_1 = ""
if "option_2" not in st.session_state:
st.session_state.option_2 = ""
if "transcribed" not in st.session_state:
st.session_state.transcribed = False
if "option_1_model_name_state" not in st.session_state:
st.session_state.option_1_model_name_state = ""
if "option_1_model_name" not in st.session_state:
st.session_state.option_1_model_name = ""
if "option_2_model_name" not in st.session_state:
st.session_state.option_2_model_name = ""
if "option_2_model_name_state" not in st.session_state:
st.session_state.option_2_model_name_state = ""
if "user_email" not in st.session_state:
st.session_state.user_email = ""
if "recording" not in st.session_state:
st.session_state.recording = True
if "disable_voting" not in st.session_state:
st.session_state.disable_voting = True
if "model_1_selection" not in st.session_state:
st.session_state.model_1_selection = "Random"
if "model_2_selection" not in st.session_state:
st.session_state.model_2_selection = "Random"
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
st.markdown("### Record Audio")
with st.container():
audio_bytes = audio_recorder(
text="Click microphone to start/stop recording",
pause_threshold=3,
icon_size="2x",
key="audio_recorder",
sample_rate=16_000
)
if audio_bytes and audio_bytes != st.session_state.get('last_recorded_audio'):
reset_state()
st.session_state.last_recorded_audio = audio_bytes
st.session_state.audio = {"data":audio_bytes,"format":"audio/wav"}
st.session_state.current_audio_type = "recorded"
st.session_state.has_audio = True
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
tmp_file.write(audio_bytes)
os.makedirs(TEMP_DIR, exist_ok=True)
st.session_state.audio_path = tmp_file.name
st.session_state.option_selected = None
st.toast("Audio recorded successfully",icon="π€")
st.session_state.recording = False
with col2:
st.markdown("### Random Audio Example")
with st.container():
st.button("π² Select Random Audio",on_click=on_random_click,key="random_btn")
st.session_state.recording = False
with col3:
st.markdown("### Upload Audio File")
with st.container():
uploaded_file = st.file_uploader(
"Choose an audio file",
type=['wav', 'mp3', 'flac'],
key="audio_uploader",
help="Upload .wav, .mp3, or .flac files (max 30 seconds)"
)
if uploaded_file is not None:
if uploaded_file != st.session_state.get('last_uploaded_file'):
st.session_state.last_uploaded_file = uploaded_file
with st.spinner("Processing uploaded audio..."):
is_valid, error_msg, audio_data, sample_rate = validate_uploaded_audio(uploaded_file)
if is_valid:
reset_state()
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
temp_path = tmp_file.name
st.session_state.audio = {
"data": audio_data,
"sample_rate": sample_rate,
"format": "audio/wav"
}
st.session_state.current_audio_type = "uploaded"
st.session_state.has_audio = True
st.session_state.audio_path = temp_path
st.session_state.option_selected = None
st.session_state.recording = False
duration = len(audio_data) / sample_rate
st.success(f"β
Audio uploaded successfully! Duration: {duration:.1f}s")
else:
st.error(f"β {error_msg}")
if st.session_state.has_audio:
st.audio(**st.session_state.audio)
st.markdown("### Model Selection")
col_model1, col_model2 = st.columns(2)
models_list = ["Random", "Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime", "azure","sarvam"]
with col_model1:
st.selectbox(
"Model 1:",
options=models_list,
index=0,
key="model_1_selection"
)
with col_model2:
st.selectbox(
"Model 2:",
options=models_list,
index=0,
key="model_2_selection"
)
with st.container():
st.button("π Transcribe Audio",on_click=on_click_transcribe,use_container_width=True,key="transcribe_btn",disabled=st.session_state.recording)
text_containers = st.columns([1, 1])
name_containers = st.columns([1, 1])
with text_containers[0]:
st.text_area("Option 1", value=st.session_state.option_1, height=300)
with text_containers[1]:
st.text_area("Option 2", value=st.session_state.option_2, height=300)
with name_containers[0]:
if st.session_state.option_1_model_name_state:
st.markdown(f"<div style='text-align: center'>{st.session_state.option_1_model_name_state}</div>", unsafe_allow_html=True)
with name_containers[1]:
if st.session_state.option_2_model_name_state:
st.markdown(f"<div style='text-align: center'>{st.session_state.option_2_model_name_state}</div>", unsafe_allow_html=True)
c1, c2, c3, c4 = st.columns(4)
with c1:
st.button("Prefer Option 1",on_click=on_option_1_click,key="option1_btn",disabled=st.session_state.disable_voting)
with c2:
st.button("Prefer Option 2",on_click=on_option_2_click,key="option2_btn",disabled=st.session_state.disable_voting)
with c3:
st.button("Prefer Both",on_click=on_option_both_click,key="both_btn",disabled=st.session_state.disable_voting)
with c4:
st.button("Prefer None",on_click=on_option_none_click,key="none_btn",disabled=st.session_state.disable_voting)
with st.container():
st.button("New Match",on_click=on_reset_click,key="reset_btn",use_container_width=True)
INSTR = """
## Instructions:
* Record audio to recognise speech, upload an audio file, or press π² for random Audio.
* Optionally select specific models using the Model 1 and Model 2 dropdowns (default is Random).
* Click on transcribe audio button to commence the transcription process.
* Read the two options one after the other while listening to the audio.
* Vote on which transcript you prefer.
* Note:
* Model names are revealed after the vote is cast.
* Currently Hindi and English are supported, and
the results for Hindi will be in Hinglish (Hindi in Latin script)
* It may take up to 30-60 seconds for speech recognition in some cases.
* Uploaded audio files must be .wav, .mp3, or .flac format and under 30 seconds duration.
""".strip()
st.markdown(INSTR)
create_files()
main() |