Spaces:
Runtime error
Runtime error
Commit
·
5f3f3d5
1
Parent(s):
2432b66
Update vtoonify_model.py
Browse files- vtoonify_model.py +21 -8
vtoonify_model.py
CHANGED
|
@@ -91,6 +91,8 @@ class Model():
|
|
| 91 |
self.color_transfer = True
|
| 92 |
else:
|
| 93 |
self.color_transfer = False
|
|
|
|
|
|
|
| 94 |
model_path, ind = self.style_types[style_type]
|
| 95 |
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
|
| 96 |
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
|
|
@@ -102,7 +104,7 @@ class Model():
|
|
| 102 |
return exstyle, 'Model of %s loaded.'%(style_type)
|
| 103 |
|
| 104 |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
| 105 |
-
message = 'Error: no face detected!'
|
| 106 |
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
|
| 107 |
instyle = torch.zeros(1,18,512).to(self.device)
|
| 108 |
h, w, scale = 0, 0, 0
|
|
@@ -136,6 +138,8 @@ class Model():
|
|
| 136 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 137 |
|
| 138 |
frame = cv2.imread(image)
|
|
|
|
|
|
|
| 139 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 140 |
return self.detect_and_align(frame, top, bottom, left, right)
|
| 141 |
|
|
@@ -143,13 +147,15 @@ class Model():
|
|
| 143 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 144 |
|
| 145 |
video_cap = cv2.VideoCapture(video)
|
|
|
|
|
|
|
| 146 |
success, frame = video_cap.read()
|
| 147 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 148 |
video_cap.release()
|
| 149 |
return self.detect_and_align(frame, top, bottom, left, right)
|
| 150 |
|
| 151 |
def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple[str, torch.Tensor, str]:
|
| 152 |
-
message = 'Error: no face detected!'
|
| 153 |
instyle = torch.zeros(1,18,512).to(self.device)
|
| 154 |
video_cap = cv2.VideoCapture(video)
|
| 155 |
num = min(300, int(video_cap.get(7)))
|
|
@@ -178,7 +184,11 @@ class Model():
|
|
| 178 |
|
| 179 |
return 'input.mp4', instyle, 'Successfully rescale the video to (%d, %d)'%(bottom-top, right-left)
|
| 180 |
|
| 181 |
-
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
if exstyle is None:
|
| 183 |
exstyle = self.exstyle
|
| 184 |
with torch.no_grad():
|
|
@@ -195,12 +205,15 @@ class Model():
|
|
| 195 |
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree)
|
| 196 |
y_tilde = torch.clamp(y_tilde, -1, 1)
|
| 197 |
|
| 198 |
-
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)
|
| 199 |
|
| 200 |
-
def video_tooniy(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float) -> str:
|
| 201 |
-
if exstyle is None:
|
| 202 |
-
exstyle = self.exstyle
|
| 203 |
video_cap = cv2.VideoCapture(aligned_video)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
num = min(300, int(video_cap.get(7)))
|
| 205 |
if self.device == 'cpu':
|
| 206 |
num = min(100, num)
|
|
@@ -243,6 +256,6 @@ class Model():
|
|
| 243 |
|
| 244 |
videoWriter.release()
|
| 245 |
video_cap.release()
|
| 246 |
-
return 'output.mp4'
|
| 247 |
|
| 248 |
|
|
|
|
| 91 |
self.color_transfer = True
|
| 92 |
else:
|
| 93 |
self.color_transfer = False
|
| 94 |
+
if style_type not in self.style_types.keys():
|
| 95 |
+
return torch.zeros(1,18,512).to(self.device), 'Oops, wrong Style Type. Please select a valid model.'
|
| 96 |
model_path, ind = self.style_types[style_type]
|
| 97 |
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
|
| 98 |
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
|
|
|
|
| 104 |
return exstyle, 'Model of %s loaded.'%(style_type)
|
| 105 |
|
| 106 |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
| 107 |
+
message = 'Error: no face detected! Please retry or change the photo.'
|
| 108 |
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
|
| 109 |
instyle = torch.zeros(1,18,512).to(self.device)
|
| 110 |
h, w, scale = 0, 0, 0
|
|
|
|
| 138 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 139 |
|
| 140 |
frame = cv2.imread(image)
|
| 141 |
+
if frame is None:
|
| 142 |
+
return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the image.'
|
| 143 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 144 |
return self.detect_and_align(frame, top, bottom, left, right)
|
| 145 |
|
|
|
|
| 147 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
| 148 |
|
| 149 |
video_cap = cv2.VideoCapture(video)
|
| 150 |
+
if video_cap.get(7) == 0:
|
| 151 |
+
return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.'
|
| 152 |
success, frame = video_cap.read()
|
| 153 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 154 |
video_cap.release()
|
| 155 |
return self.detect_and_align(frame, top, bottom, left, right)
|
| 156 |
|
| 157 |
def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple[str, torch.Tensor, str]:
|
| 158 |
+
message = 'Error: no face detected! Please retry or change the video.'
|
| 159 |
instyle = torch.zeros(1,18,512).to(self.device)
|
| 160 |
video_cap = cv2.VideoCapture(video)
|
| 161 |
num = min(300, int(video_cap.get(7)))
|
|
|
|
| 184 |
|
| 185 |
return 'input.mp4', instyle, 'Successfully rescale the video to (%d, %d)'%(bottom-top, right-left)
|
| 186 |
|
| 187 |
+
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float) -> tuple[np.ndarray, str]:
|
| 188 |
+
if instyle is None or aligned_face is None:
|
| 189 |
+
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
|
| 190 |
+
if exstyle is None:
|
| 191 |
+
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
|
| 192 |
if exstyle is None:
|
| 193 |
exstyle = self.exstyle
|
| 194 |
with torch.no_grad():
|
|
|
|
| 205 |
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree)
|
| 206 |
y_tilde = torch.clamp(y_tilde, -1, 1)
|
| 207 |
|
| 208 |
+
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image'
|
| 209 |
|
| 210 |
+
def video_tooniy(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float) -> tuple[str, str]:
|
|
|
|
|
|
|
| 211 |
video_cap = cv2.VideoCapture(aligned_video)
|
| 212 |
+
if instyle is None or aligned_face is None or video_cap.get(7) == 0:
|
| 213 |
+
video_cap.release()
|
| 214 |
+
return 'output.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.'
|
| 215 |
+
if exstyle is None:
|
| 216 |
+
return 'output.mp4', 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
|
| 217 |
num = min(300, int(video_cap.get(7)))
|
| 218 |
if self.device == 'cpu':
|
| 219 |
num = min(100, num)
|
|
|
|
| 256 |
|
| 257 |
videoWriter.release()
|
| 258 |
video_cap.release()
|
| 259 |
+
return 'output.mp4', 'Successfully toonify video of %d frames'%(num)
|
| 260 |
|
| 261 |
|