Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -50,12 +50,12 @@ def generate_plot(E, A, k, alpha):
|
|
50 |
return plt
|
51 |
|
52 |
|
53 |
-
OUTPUT_TEMPLATE = """Loss for a {n}B model when P={p} is: **{loss}**. It is equivalant to:
|
54 |
|
55 |
-
- A {n1}B model with P=1
|
56 |
-
- A {n2}B model with P=2
|
57 |
-
- A {n4}B model with P=4
|
58 |
-
- A {n8}B model with P=8
|
59 |
|
60 |
Note: The equivalent parameters are for reference only. In some reasoning tasks, scaling the parallel streams will obtain more performance gains than the loss benefits!
|
61 |
|
@@ -77,13 +77,12 @@ def process_inputs(E, A, k, alpha, n, p):
|
|
77 |
|
78 |
# Create interface
|
79 |
|
80 |
-
HEAD = """
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
$$
|
87 |
"""
|
88 |
|
89 |
with gr.Blocks() as demo:
|
@@ -91,6 +90,12 @@ with gr.Blocks() as demo:
|
|
91 |
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
# Input values
|
96 |
N = gr.Number(value=2.8, label="N: Number of Non-Embedding Model Parameters (in Billion)")
|
@@ -111,11 +116,12 @@ with gr.Blocks() as demo:
|
|
111 |
param_k = gr.Number(value=PARAM_SETS["Stack-V2-Python"]['k'], label="k")
|
112 |
param_alpha = gr.Number(value=PARAM_SETS["Stack-V2-Python"]['alpha'], label="alpha")
|
113 |
|
114 |
-
submit_btn = gr.Button("Estimate Loss and Equivalant Model Parameters")
|
115 |
|
116 |
|
117 |
plot, output = process_inputs(PARAM_SETS["Stack-V2-Python"]['E'], PARAM_SETS["Stack-V2-Python"]['A'], PARAM_SETS["Stack-V2-Python"]['k'], PARAM_SETS["Stack-V2-Python"]['alpha'], 2.8, 4)
|
118 |
with gr.Column():
|
|
|
|
|
119 |
# Output section
|
120 |
plot_output = gr.Plot(label="Scaling Law Curve", value=plot)
|
121 |
result_output = gr.Markdown(label="Result", value=output)
|
|
|
50 |
return plt
|
51 |
|
52 |
|
53 |
+
OUTPUT_TEMPLATE = """Loss for a {n}B model when P={p} is: **{loss:.5f}**. It is equivalant to:
|
54 |
|
55 |
+
- A **{n1}B** model with **P=1**;
|
56 |
+
- A **{n2}B** model with **P=2**;
|
57 |
+
- A **{n4}B** model with **P=4**;
|
58 |
+
- A **{n8}B** model with **P=8**;
|
59 |
|
60 |
Note: The equivalent parameters are for reference only. In some reasoning tasks, scaling the parallel streams will obtain more performance gains than the loss benefits!
|
61 |
|
|
|
77 |
|
78 |
# Create interface
|
79 |
|
80 |
+
HEAD = """<div align="center">
|
81 |
|
82 |
+
# Parallel Scaling Law Visualization
|
83 |
+
|
84 |
+
[](https://arxiv.org/abs/2505.10475)
|
85 |
+
</div>
|
|
|
86 |
"""
|
87 |
|
88 |
with gr.Blocks() as demo:
|
|
|
90 |
|
91 |
with gr.Row():
|
92 |
with gr.Column():
|
93 |
+
|
94 |
+
gr.Markdown("""$$
|
95 |
+
\\text{Loss}=E+\\left(
|
96 |
+
\\frac{A}{\\text{Parameters}\\times (1+k\\log P)}
|
97 |
+
\\right)^{\\alpha}
|
98 |
+
$$""")
|
99 |
|
100 |
# Input values
|
101 |
N = gr.Number(value=2.8, label="N: Number of Non-Embedding Model Parameters (in Billion)")
|
|
|
116 |
param_k = gr.Number(value=PARAM_SETS["Stack-V2-Python"]['k'], label="k")
|
117 |
param_alpha = gr.Number(value=PARAM_SETS["Stack-V2-Python"]['alpha'], label="alpha")
|
118 |
|
|
|
119 |
|
120 |
|
121 |
plot, output = process_inputs(PARAM_SETS["Stack-V2-Python"]['E'], PARAM_SETS["Stack-V2-Python"]['A'], PARAM_SETS["Stack-V2-Python"]['k'], PARAM_SETS["Stack-V2-Python"]['alpha'], 2.8, 4)
|
122 |
with gr.Column():
|
123 |
+
|
124 |
+
submit_btn = gr.Button("Calculate")
|
125 |
# Output section
|
126 |
plot_output = gr.Plot(label="Scaling Law Curve", value=plot)
|
127 |
result_output = gr.Markdown(label="Result", value=output)
|