Update app.py
Browse files
app.py
CHANGED
@@ -1,136 +1,135 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from transformers import (
|
4 |
-
Idefics2Processor, Idefics2ForConditionalGeneration,
|
5 |
-
Blip2Processor, Blip2ForConditionalGeneration
|
6 |
-
)
|
7 |
-
from PIL import Image
|
8 |
-
import time
|
9 |
-
import pandas as pd
|
10 |
-
import nltk
|
11 |
-
from nltk.translate.bleu_score import sentence_bleu
|
12 |
-
|
13 |
-
# Descargar 'punkt' si no está disponible
|
14 |
-
try:
|
15 |
-
nltk.data.find("tokenizers/punkt")
|
16 |
-
except LookupError:
|
17 |
-
nltk.download("punkt")
|
18 |
-
|
19 |
-
# Configuración del dispositivo
|
20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
-
print(f"Usando dispositivo: {device}")
|
22 |
-
|
23 |
-
# Definición de modelos
|
24 |
-
models = {
|
25 |
-
"IDEFICS2": {
|
26 |
-
"model_id": "HuggingFaceM4/idefics2-8b",
|
27 |
-
"processor_class": Idefics2Processor,
|
28 |
-
"model_class": Idefics2ForConditionalGeneration,
|
29 |
-
"caption_prompt": "<image>Describe the image in detail"
|
30 |
-
},
|
31 |
-
"BLIP2": {
|
32 |
-
"model_id": "Salesforce/blip2-opt-2.7b",
|
33 |
-
"processor_class": Blip2Processor,
|
34 |
-
"model_class": Blip2ForConditionalGeneration,
|
35 |
-
"caption_prompt": "" # Prompt vacío para BLIP2
|
36 |
-
}
|
37 |
-
}
|
38 |
-
|
39 |
-
# Cargar modelos (pre-cargados para evitar retrasos)
|
40 |
-
model_instances = {}
|
41 |
-
for model_name, config in models.items():
|
42 |
-
processor = config["processor_class"].from_pretrained(config["model_id"])
|
43 |
-
model = config["model_class"].from_pretrained(config["model_id"]).to(device)
|
44 |
-
model_instances[model_name] = (processor, model)
|
45 |
-
|
46 |
-
# Preguntas VQA predefinidas
|
47 |
-
vqa_questions = [
|
48 |
-
"Are there people in the image?",
|
49 |
-
"Which color predominates in the image?"
|
50 |
-
]
|
51 |
-
|
52 |
-
# Referencia genérica para BLEU (puedes ajustar según necesidades)
|
53 |
-
reference_caption = ["An image with people and various objects"]
|
54 |
-
|
55 |
-
def infer(image, model_name, task, question=None):
|
56 |
-
if image is None:
|
57 |
-
return "Por favor, sube una imagen.", None, None, None, None, None
|
58 |
-
|
59 |
-
# Abrir y preparar la imagen
|
60 |
-
image = Image.open(image).convert("RGB")
|
61 |
-
if "BLIP2" in model_name:
|
62 |
-
image = image.resize((224, 224))
|
63 |
-
|
64 |
-
processor, model = model_instances[model_name]
|
65 |
-
|
66 |
-
start_time = time.time()
|
67 |
-
vram = torch.cuda.memory_allocated() / 1024**3 if torch.cuda.is_available() else 0
|
68 |
-
|
69 |
-
if task == "captioning":
|
70 |
-
caption_prompt = models[model_name]["caption_prompt"]
|
71 |
-
caption_text = "" if "BLIP2" in model_name else caption_prompt
|
72 |
-
inputs = processor(images=image, text=caption_text, return_tensors="pt").to(device)
|
73 |
-
output_ids = model.generate(
|
74 |
-
**inputs,
|
75 |
-
max_new_tokens=50,
|
76 |
-
num_beams=5 if "BLIP2" in model_name else 1,
|
77 |
-
no_repeat_ngram_size=2 if "BLIP2" in model_name else 0
|
78 |
-
)
|
79 |
-
caption = processor.decode(output_ids[0], skip_special_tokens=True)
|
80 |
-
inference_time = time.time() - start_time
|
81 |
-
|
82 |
-
# Calcular BLEU (simplificado, usando referencia genérica)
|
83 |
-
bleu_score = sentence_bleu([reference_caption[0].split()], caption.split()) if caption else 0.0
|
84 |
-
|
85 |
-
return (caption, inference_time, None, None, vram, bleu_score)
|
86 |
-
|
87 |
-
elif task == "vqa" and question:
|
88 |
-
vqa_text = question if "BLIP2" in model_name else f"<image>Q: {question}"
|
89 |
-
inputs = processor(images=image, text=vqa_text, return_tensors="pt").to(device)
|
90 |
-
output_ids = model.generate(
|
91 |
-
**inputs,
|
92 |
-
max_new_tokens=10,
|
93 |
-
num_beams=5 if "BLIP2" in model_name else 1,
|
94 |
-
no_repeat_ngram_size=2 if "BLIP2" in model_name else 0
|
95 |
-
)
|
96 |
-
vqa_answer = processor.decode(output_ids[0], skip_special_tokens=True)
|
97 |
-
inference_time = time.time() - start_time
|
98 |
-
|
99 |
-
return (None, None, vqa_answer, inference_time, vram, None)
|
100 |
-
|
101 |
-
return "Selecciona una tarea válida y, para VQA, una pregunta.", None, None, None, None, None
|
102 |
-
|
103 |
-
# Interfaz Gradio
|
104 |
-
with gr.Blocks(title="MLLM Benchmark Demo") as demo:
|
105 |
-
gr.Markdown("#
|
106 |
-
gr.Markdown("Sube una imagen, selecciona un modelo y una tarea, y obtén resultados de captioning o VQA.")
|
107 |
-
|
108 |
-
with gr.Row():
|
109 |
-
with gr.Column():
|
110 |
-
image_input = gr.Image(type="filepath", label="Subir Imagen")
|
111 |
-
model_dropdown = gr.Dropdown(choices=["IDEFICS2", "BLIP2"], label="Seleccionar Modelo", value="IDEFICS2")
|
112 |
-
task_dropdown = gr.Dropdown(choices=["captioning", "vqa"], label="Seleccionar Tarea", value="captioning")
|
113 |
-
question_input = gr.Textbox(label="Pregunta VQA (opcional, solo para VQA)", placeholder="Ej: Are there people in the image?")
|
114 |
-
submit_btn = gr.Button("Generar")
|
115 |
-
|
116 |
-
with gr.Column():
|
117 |
-
caption_output = gr.Textbox(label="Subtítulo Generado")
|
118 |
-
vqa_output = gr.Textbox(label="Respuesta VQA")
|
119 |
-
metrics_output = gr.Textbox(label="Métricas (Tiempo, VRAM, BLEU)")
|
120 |
-
|
121 |
-
submit_btn.click(
|
122 |
-
fn=infer,
|
123 |
-
inputs=[image_input, model_dropdown, task_dropdown, question_input],
|
124 |
-
outputs=[caption_output, gr.Number(label="Tiempo Captioning (s)"), vqa_output, gr.Number(label="Tiempo VQA (s)"), gr.Number(label="VRAM (GB)"), gr.Number(label="BLEU Score")]
|
125 |
-
)
|
126 |
-
|
127 |
-
gr.Markdown("### Notas")
|
128 |
-
gr.Markdown("""
|
129 |
-
-
|
130 |
-
-
|
131 |
-
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
if __name__ == "__main__":
|
136 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
Idefics2Processor, Idefics2ForConditionalGeneration,
|
5 |
+
Blip2Processor, Blip2ForConditionalGeneration
|
6 |
+
)
|
7 |
+
from PIL import Image
|
8 |
+
import time
|
9 |
+
import pandas as pd
|
10 |
+
import nltk
|
11 |
+
from nltk.translate.bleu_score import sentence_bleu
|
12 |
+
|
13 |
+
# Descargar 'punkt' si no está disponible
|
14 |
+
try:
|
15 |
+
nltk.data.find("tokenizers/punkt")
|
16 |
+
except LookupError:
|
17 |
+
nltk.download("punkt")
|
18 |
+
|
19 |
+
# Configuración del dispositivo
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
print(f"Usando dispositivo: {device}")
|
22 |
+
|
23 |
+
# Definición de modelos
|
24 |
+
models = {
|
25 |
+
"IDEFICS2": {
|
26 |
+
"model_id": "HuggingFaceM4/idefics2-8b",
|
27 |
+
"processor_class": Idefics2Processor,
|
28 |
+
"model_class": Idefics2ForConditionalGeneration,
|
29 |
+
"caption_prompt": "<image>Describe the image in detail"
|
30 |
+
},
|
31 |
+
"BLIP2": {
|
32 |
+
"model_id": "Salesforce/blip2-opt-2.7b",
|
33 |
+
"processor_class": Blip2Processor,
|
34 |
+
"model_class": Blip2ForConditionalGeneration,
|
35 |
+
"caption_prompt": "" # Prompt vacío para BLIP2
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
# Cargar modelos (pre-cargados para evitar retrasos)
|
40 |
+
model_instances = {}
|
41 |
+
for model_name, config in models.items():
|
42 |
+
processor = config["processor_class"].from_pretrained(config["model_id"])
|
43 |
+
model = config["model_class"].from_pretrained(config["model_id"]).to(device)
|
44 |
+
model_instances[model_name] = (processor, model)
|
45 |
+
|
46 |
+
# Preguntas VQA predefinidas
|
47 |
+
vqa_questions = [
|
48 |
+
"Are there people in the image?",
|
49 |
+
"Which color predominates in the image?"
|
50 |
+
]
|
51 |
+
|
52 |
+
# Referencia genérica para BLEU (puedes ajustar según necesidades)
|
53 |
+
reference_caption = ["An image with people and various objects"]
|
54 |
+
|
55 |
+
def infer(image, model_name, task, question=None):
|
56 |
+
if image is None:
|
57 |
+
return "Por favor, sube una imagen.", None, None, None, None, None
|
58 |
+
|
59 |
+
# Abrir y preparar la imagen
|
60 |
+
image = Image.open(image).convert("RGB")
|
61 |
+
if "BLIP2" in model_name:
|
62 |
+
image = image.resize((224, 224))
|
63 |
+
|
64 |
+
processor, model = model_instances[model_name]
|
65 |
+
|
66 |
+
start_time = time.time()
|
67 |
+
vram = torch.cuda.memory_allocated() / 1024**3 if torch.cuda.is_available() else 0
|
68 |
+
|
69 |
+
if task == "captioning":
|
70 |
+
caption_prompt = models[model_name]["caption_prompt"]
|
71 |
+
caption_text = "" if "BLIP2" in model_name else caption_prompt
|
72 |
+
inputs = processor(images=image, text=caption_text, return_tensors="pt").to(device)
|
73 |
+
output_ids = model.generate(
|
74 |
+
**inputs,
|
75 |
+
max_new_tokens=50,
|
76 |
+
num_beams=5 if "BLIP2" in model_name else 1,
|
77 |
+
no_repeat_ngram_size=2 if "BLIP2" in model_name else 0
|
78 |
+
)
|
79 |
+
caption = processor.decode(output_ids[0], skip_special_tokens=True)
|
80 |
+
inference_time = time.time() - start_time
|
81 |
+
|
82 |
+
# Calcular BLEU (simplificado, usando referencia genérica)
|
83 |
+
bleu_score = sentence_bleu([reference_caption[0].split()], caption.split()) if caption else 0.0
|
84 |
+
|
85 |
+
return (caption, inference_time, None, None, vram, bleu_score)
|
86 |
+
|
87 |
+
elif task == "vqa" and question:
|
88 |
+
vqa_text = question if "BLIP2" in model_name else f"<image>Q: {question}"
|
89 |
+
inputs = processor(images=image, text=vqa_text, return_tensors="pt").to(device)
|
90 |
+
output_ids = model.generate(
|
91 |
+
**inputs,
|
92 |
+
max_new_tokens=10,
|
93 |
+
num_beams=5 if "BLIP2" in model_name else 1,
|
94 |
+
no_repeat_ngram_size=2 if "BLIP2" in model_name else 0
|
95 |
+
)
|
96 |
+
vqa_answer = processor.decode(output_ids[0], skip_special_tokens=True)
|
97 |
+
inference_time = time.time() - start_time
|
98 |
+
|
99 |
+
return (None, None, vqa_answer, inference_time, vram, None)
|
100 |
+
|
101 |
+
return "Selecciona una tarea válida y, para VQA, una pregunta.", None, None, None, None, None
|
102 |
+
|
103 |
+
# Interfaz Gradio
|
104 |
+
with gr.Blocks(title="MLLM Benchmark Demo") as demo:
|
105 |
+
gr.Markdown("# Benchmark para Modelos Multimodales (MLLMs)")
|
106 |
+
gr.Markdown("Sube una imagen, selecciona un modelo y una tarea, y obtén resultados de captioning o VQA.")
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column():
|
110 |
+
image_input = gr.Image(type="filepath", label="Subir Imagen")
|
111 |
+
model_dropdown = gr.Dropdown(choices=["IDEFICS2", "BLIP2"], label="Seleccionar Modelo", value="IDEFICS2")
|
112 |
+
task_dropdown = gr.Dropdown(choices=["captioning", "vqa"], label="Seleccionar Tarea", value="captioning")
|
113 |
+
question_input = gr.Textbox(label="Pregunta VQA (opcional, solo para VQA)", placeholder="Ej: Are there people in the image?")
|
114 |
+
submit_btn = gr.Button("Generar")
|
115 |
+
|
116 |
+
with gr.Column():
|
117 |
+
caption_output = gr.Textbox(label="Subtítulo Generado")
|
118 |
+
vqa_output = gr.Textbox(label="Respuesta VQA")
|
119 |
+
metrics_output = gr.Textbox(label="Métricas (Tiempo, VRAM, BLEU)")
|
120 |
+
|
121 |
+
submit_btn.click(
|
122 |
+
fn=infer,
|
123 |
+
inputs=[image_input, model_dropdown, task_dropdown, question_input],
|
124 |
+
outputs=[caption_output, gr.Number(label="Tiempo Captioning (s)"), vqa_output, gr.Number(label="Tiempo VQA (s)"), gr.Number(label="VRAM (GB)"), gr.Number(label="BLEU Score")]
|
125 |
+
)
|
126 |
+
|
127 |
+
gr.Markdown("### Notas")
|
128 |
+
gr.Markdown("""
|
129 |
+
- para mejroar la velocidad de inferencia, descarga en local y usar GPU avanzada.
|
130 |
+
- La métrica BLEU usa una referencia genérica y puede no reflejar la calidad real.
|
131 |
+
- Para más detalles, consulta el [repositorio del paper](https://huggingface.co/spaces/Pdro-ruiz/MLLM_Estado_del_Arte_Feb25/tree/main).
|
132 |
+
""")
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
|
|
135 |
demo.launch()
|