Spaces:
Sleeping
Sleeping
File size: 1,010 Bytes
3d3f248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.vectorstores import Pinecone
import pinecone
from consts import INDEX_NAME
# initialize pinecone client
pinecone.init(api_key=os.environ["PINECONE_API_KEY"],
environment=os.environ["PINECONE_ENVIRONMENT"])
def run_llm(query: str) -> any:
embeddings = OpenAIEmbeddings()
# instance of vector db
docsearch = Pinecone.from_existing_index(
index_name=INDEX_NAME, embedding=embeddings)
chat = ChatOpenAI(verbose=True, temperature=0)
# The RetrievalQA chain needs a retriever, which we can create by using the .as_retriever() method
qa = RetrievalQA.from_chain_type(
llm=chat, chain_type="stuff", retriever=docsearch.as_retriever(), return_source_documents=True)
return qa({"query": query})
if __name__ == '__main__':
print(run_llm("What are the core modules of LangChain?"))
|