import os from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.chains import RetrievalQA from langchain.vectorstores import Pinecone import pinecone from consts import INDEX_NAME # initialize pinecone client pinecone.init(api_key=os.environ["PINECONE_API_KEY"], environment=os.environ["PINECONE_ENVIRONMENT"]) def run_llm(query: str) -> any: embeddings = OpenAIEmbeddings() # instance of vector db docsearch = Pinecone.from_existing_index( index_name=INDEX_NAME, embedding=embeddings) chat = ChatOpenAI(verbose=True, temperature=0) # The RetrievalQA chain needs a retriever, which we can create by using the .as_retriever() method qa = RetrievalQA.from_chain_type( llm=chat, chain_type="stuff", retriever=docsearch.as_retriever(), return_source_documents=True) return qa({"query": query}) if __name__ == '__main__': print(run_llm("What are the core modules of LangChain?"))