|  | import os | 
					
						
						|  | import shutil | 
					
						
						|  | import sys | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  |  | 
					
						
						|  | now_dir = os.getcwd() | 
					
						
						|  | sys.path.append(now_dir) | 
					
						
						|  | import traceback, pdb | 
					
						
						|  | import warnings | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" | 
					
						
						|  | import logging | 
					
						
						|  | import threading | 
					
						
						|  | from random import shuffle | 
					
						
						|  | from subprocess import Popen | 
					
						
						|  | from time import sleep | 
					
						
						|  |  | 
					
						
						|  | import faiss | 
					
						
						|  | import ffmpeg | 
					
						
						|  | import gradio as gr | 
					
						
						|  | import soundfile as sf | 
					
						
						|  | from config import Config | 
					
						
						|  | from fairseq import checkpoint_utils | 
					
						
						|  | from i18n import I18nAuto | 
					
						
						|  | from infer_pack.models import ( | 
					
						
						|  | SynthesizerTrnMs256NSFsid, | 
					
						
						|  | SynthesizerTrnMs256NSFsid_nono, | 
					
						
						|  | SynthesizerTrnMs768NSFsid, | 
					
						
						|  | SynthesizerTrnMs768NSFsid_nono, | 
					
						
						|  | ) | 
					
						
						|  | from infer_pack.models_onnx import SynthesizerTrnMsNSFsidM | 
					
						
						|  | from infer_uvr5 import _audio_pre_, _audio_pre_new | 
					
						
						|  | from MDXNet import MDXNetDereverb | 
					
						
						|  | from my_utils import load_audio | 
					
						
						|  | from train.process_ckpt import change_info, extract_small_model, merge, show_info | 
					
						
						|  | from vc_infer_pipeline import VC | 
					
						
						|  | from sklearn.cluster import MiniBatchKMeans | 
					
						
						|  |  | 
					
						
						|  | logging.getLogger("numba").setLevel(logging.WARNING) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tmp = os.path.join(now_dir, "TEMP") | 
					
						
						|  | shutil.rmtree(tmp, ignore_errors=True) | 
					
						
						|  | shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) | 
					
						
						|  | shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) | 
					
						
						|  | os.makedirs(tmp, exist_ok=True) | 
					
						
						|  | os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) | 
					
						
						|  | os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) | 
					
						
						|  | os.environ["TEMP"] = tmp | 
					
						
						|  | warnings.filterwarnings("ignore") | 
					
						
						|  | torch.manual_seed(114514) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = Config() | 
					
						
						|  | i18n = I18nAuto() | 
					
						
						|  | i18n.print() | 
					
						
						|  |  | 
					
						
						|  | ngpu = torch.cuda.device_count() | 
					
						
						|  | gpu_infos = [] | 
					
						
						|  | mem = [] | 
					
						
						|  | if_gpu_ok = False | 
					
						
						|  |  | 
					
						
						|  | if torch.cuda.is_available() or ngpu != 0: | 
					
						
						|  | for i in range(ngpu): | 
					
						
						|  | gpu_name = torch.cuda.get_device_name(i) | 
					
						
						|  | if any( | 
					
						
						|  | value in gpu_name.upper() | 
					
						
						|  | for value in [ | 
					
						
						|  | "10", | 
					
						
						|  | "16", | 
					
						
						|  | "20", | 
					
						
						|  | "30", | 
					
						
						|  | "40", | 
					
						
						|  | "A2", | 
					
						
						|  | "A3", | 
					
						
						|  | "A4", | 
					
						
						|  | "P4", | 
					
						
						|  | "A50", | 
					
						
						|  | "500", | 
					
						
						|  | "A60", | 
					
						
						|  | "70", | 
					
						
						|  | "80", | 
					
						
						|  | "90", | 
					
						
						|  | "M4", | 
					
						
						|  | "T4", | 
					
						
						|  | "TITAN", | 
					
						
						|  | ] | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if_gpu_ok = True | 
					
						
						|  | gpu_infos.append("%s\t%s" % (i, gpu_name)) | 
					
						
						|  | mem.append( | 
					
						
						|  | int( | 
					
						
						|  | torch.cuda.get_device_properties(i).total_memory | 
					
						
						|  | / 1024 | 
					
						
						|  | / 1024 | 
					
						
						|  | / 1024 | 
					
						
						|  | + 0.4 | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | if if_gpu_ok and len(gpu_infos) > 0: | 
					
						
						|  | gpu_info = "\n".join(gpu_infos) | 
					
						
						|  | default_batch_size = min(mem) // 2 | 
					
						
						|  | else: | 
					
						
						|  | gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") | 
					
						
						|  | default_batch_size = 1 | 
					
						
						|  | gpus = "-".join([i[0] for i in gpu_infos]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ToolButton(gr.Button, gr.components.FormComponent): | 
					
						
						|  | """Small button with single emoji as text, fits inside gradio forms""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | super().__init__(variant="tool", **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def get_block_name(self): | 
					
						
						|  | return "button" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hubert_model = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_hubert(): | 
					
						
						|  | global hubert_model | 
					
						
						|  | models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | 
					
						
						|  | ["hubert_base.pt"], | 
					
						
						|  | suffix="", | 
					
						
						|  | ) | 
					
						
						|  | hubert_model = models[0] | 
					
						
						|  | hubert_model = hubert_model.to(config.device) | 
					
						
						|  | if config.is_half: | 
					
						
						|  | hubert_model = hubert_model.half() | 
					
						
						|  | else: | 
					
						
						|  | hubert_model = hubert_model.float() | 
					
						
						|  | hubert_model.eval() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | weight_root = "weights" | 
					
						
						|  | weight_uvr5_root = "uvr5_weights" | 
					
						
						|  | index_root = "logs" | 
					
						
						|  | names = [] | 
					
						
						|  | for name in os.listdir(weight_root): | 
					
						
						|  | if name.endswith(".pth"): | 
					
						
						|  | names.append(name) | 
					
						
						|  | index_paths = [] | 
					
						
						|  | for root, dirs, files in os.walk(index_root, topdown=False): | 
					
						
						|  | for name in files: | 
					
						
						|  | if name.endswith(".index") and "trained" not in name: | 
					
						
						|  | index_paths.append("%s/%s" % (root, name)) | 
					
						
						|  | uvr5_names = [] | 
					
						
						|  | for name in os.listdir(weight_uvr5_root): | 
					
						
						|  | if name.endswith(".pth") or "onnx" in name: | 
					
						
						|  | uvr5_names.append(name.replace(".pth", "")) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vc_single( | 
					
						
						|  | sid, | 
					
						
						|  | input_audio_path, | 
					
						
						|  | f0_up_key, | 
					
						
						|  | f0_file, | 
					
						
						|  | f0_method, | 
					
						
						|  | file_index, | 
					
						
						|  | file_index2, | 
					
						
						|  |  | 
					
						
						|  | index_rate, | 
					
						
						|  | filter_radius, | 
					
						
						|  | resample_sr, | 
					
						
						|  | rms_mix_rate, | 
					
						
						|  | protect, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | ): | 
					
						
						|  | global tgt_sr, net_g, vc, hubert_model, version | 
					
						
						|  | if input_audio_path is None: | 
					
						
						|  | return "You need to upload an audio", None | 
					
						
						|  | f0_up_key = int(f0_up_key) | 
					
						
						|  | try: | 
					
						
						|  | audio = load_audio(input_audio_path, 16000) | 
					
						
						|  | audio_max = np.abs(audio).max() / 0.95 | 
					
						
						|  | if audio_max > 1: | 
					
						
						|  | audio /= audio_max | 
					
						
						|  | times = [0, 0, 0] | 
					
						
						|  | if not hubert_model: | 
					
						
						|  | load_hubert() | 
					
						
						|  | if_f0 = cpt.get("f0", 1) | 
					
						
						|  | file_index = ( | 
					
						
						|  | ( | 
					
						
						|  | file_index.strip(" ") | 
					
						
						|  | .strip('"') | 
					
						
						|  | .strip("\n") | 
					
						
						|  | .strip('"') | 
					
						
						|  | .strip(" ") | 
					
						
						|  | .replace("trained", "added") | 
					
						
						|  | ) | 
					
						
						|  | if file_index != "" | 
					
						
						|  | else file_index2 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | audio_opt = vc.pipeline( | 
					
						
						|  | hubert_model, | 
					
						
						|  | net_g, | 
					
						
						|  | sid, | 
					
						
						|  | audio, | 
					
						
						|  | input_audio_path, | 
					
						
						|  | times, | 
					
						
						|  | f0_up_key, | 
					
						
						|  | f0_method, | 
					
						
						|  | file_index, | 
					
						
						|  |  | 
					
						
						|  | index_rate, | 
					
						
						|  | if_f0, | 
					
						
						|  | filter_radius, | 
					
						
						|  | tgt_sr, | 
					
						
						|  | resample_sr, | 
					
						
						|  | rms_mix_rate, | 
					
						
						|  | version, | 
					
						
						|  | protect, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | f0_file=f0_file, | 
					
						
						|  | ) | 
					
						
						|  | if tgt_sr != resample_sr >= 16000: | 
					
						
						|  | tgt_sr = resample_sr | 
					
						
						|  | index_info = ( | 
					
						
						|  | "Using index:%s." % file_index | 
					
						
						|  | if os.path.exists(file_index) | 
					
						
						|  | else "Index not used." | 
					
						
						|  | ) | 
					
						
						|  | return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( | 
					
						
						|  | index_info, | 
					
						
						|  | times[0], | 
					
						
						|  | times[1], | 
					
						
						|  | times[2], | 
					
						
						|  | ), (tgt_sr, audio_opt) | 
					
						
						|  | except: | 
					
						
						|  | info = traceback.format_exc() | 
					
						
						|  | print(info) | 
					
						
						|  | return info, (None, None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vc_multi( | 
					
						
						|  | sid, | 
					
						
						|  | dir_path, | 
					
						
						|  | opt_root, | 
					
						
						|  | paths, | 
					
						
						|  | f0_up_key, | 
					
						
						|  | f0_method, | 
					
						
						|  | file_index, | 
					
						
						|  | file_index2, | 
					
						
						|  |  | 
					
						
						|  | index_rate, | 
					
						
						|  | filter_radius, | 
					
						
						|  | resample_sr, | 
					
						
						|  | rms_mix_rate, | 
					
						
						|  | protect, | 
					
						
						|  | format1, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | ): | 
					
						
						|  | try: | 
					
						
						|  | dir_path = ( | 
					
						
						|  | dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | 
					
						
						|  | ) | 
					
						
						|  | opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | 
					
						
						|  | os.makedirs(opt_root, exist_ok=True) | 
					
						
						|  | try: | 
					
						
						|  | if dir_path != "": | 
					
						
						|  | paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)] | 
					
						
						|  | else: | 
					
						
						|  | paths = [path.name for path in paths] | 
					
						
						|  | except: | 
					
						
						|  | traceback.print_exc() | 
					
						
						|  | paths = [path.name for path in paths] | 
					
						
						|  | infos = [] | 
					
						
						|  | for path in paths: | 
					
						
						|  | info, opt = vc_single( | 
					
						
						|  | sid, | 
					
						
						|  | path, | 
					
						
						|  | f0_up_key, | 
					
						
						|  | None, | 
					
						
						|  | f0_method, | 
					
						
						|  | file_index, | 
					
						
						|  | file_index2, | 
					
						
						|  |  | 
					
						
						|  | index_rate, | 
					
						
						|  | filter_radius, | 
					
						
						|  | resample_sr, | 
					
						
						|  | rms_mix_rate, | 
					
						
						|  | protect, | 
					
						
						|  | crepe_hop_length | 
					
						
						|  | ) | 
					
						
						|  | if "Success" in info: | 
					
						
						|  | try: | 
					
						
						|  | tgt_sr, audio_opt = opt | 
					
						
						|  | if format1 in ["wav", "flac"]: | 
					
						
						|  | sf.write( | 
					
						
						|  | "%s/%s.%s" % (opt_root, os.path.basename(path), format1), | 
					
						
						|  | audio_opt, | 
					
						
						|  | tgt_sr, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | path = "%s/%s.wav" % (opt_root, os.path.basename(path)) | 
					
						
						|  | sf.write( | 
					
						
						|  | path, | 
					
						
						|  | audio_opt, | 
					
						
						|  | tgt_sr, | 
					
						
						|  | ) | 
					
						
						|  | if os.path.exists(path): | 
					
						
						|  | os.system( | 
					
						
						|  | "ffmpeg -i %s -vn %s -q:a 2 -y" | 
					
						
						|  | % (path, path[:-4] + ".%s" % format1) | 
					
						
						|  | ) | 
					
						
						|  | except: | 
					
						
						|  | info += traceback.format_exc() | 
					
						
						|  | infos.append("%s->%s" % (os.path.basename(path), info)) | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | except: | 
					
						
						|  | yield traceback.format_exc() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): | 
					
						
						|  | infos = [] | 
					
						
						|  | try: | 
					
						
						|  | inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | 
					
						
						|  | save_root_vocal = ( | 
					
						
						|  | save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | 
					
						
						|  | ) | 
					
						
						|  | save_root_ins = ( | 
					
						
						|  | save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | 
					
						
						|  | ) | 
					
						
						|  | if model_name == "onnx_dereverb_By_FoxJoy": | 
					
						
						|  | pre_fun = MDXNetDereverb(15) | 
					
						
						|  | else: | 
					
						
						|  | func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new | 
					
						
						|  | pre_fun = func( | 
					
						
						|  | agg=int(agg), | 
					
						
						|  | model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), | 
					
						
						|  | device=config.device, | 
					
						
						|  | is_half=config.is_half, | 
					
						
						|  | ) | 
					
						
						|  | if inp_root != "": | 
					
						
						|  | paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] | 
					
						
						|  | else: | 
					
						
						|  | paths = [path.name for path in paths] | 
					
						
						|  | for path in paths: | 
					
						
						|  | inp_path = os.path.join(inp_root, path) | 
					
						
						|  | need_reformat = 1 | 
					
						
						|  | done = 0 | 
					
						
						|  | try: | 
					
						
						|  | info = ffmpeg.probe(inp_path, cmd="ffprobe") | 
					
						
						|  | if ( | 
					
						
						|  | info["streams"][0]["channels"] == 2 | 
					
						
						|  | and info["streams"][0]["sample_rate"] == "44100" | 
					
						
						|  | ): | 
					
						
						|  | need_reformat = 0 | 
					
						
						|  | pre_fun._path_audio_( | 
					
						
						|  | inp_path, save_root_ins, save_root_vocal, format0 | 
					
						
						|  | ) | 
					
						
						|  | done = 1 | 
					
						
						|  | except: | 
					
						
						|  | need_reformat = 1 | 
					
						
						|  | traceback.print_exc() | 
					
						
						|  | if need_reformat == 1: | 
					
						
						|  | tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path)) | 
					
						
						|  | os.system( | 
					
						
						|  | "ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" | 
					
						
						|  | % (inp_path, tmp_path) | 
					
						
						|  | ) | 
					
						
						|  | inp_path = tmp_path | 
					
						
						|  | try: | 
					
						
						|  | if done == 0: | 
					
						
						|  | pre_fun._path_audio_( | 
					
						
						|  | inp_path, save_root_ins, save_root_vocal, format0 | 
					
						
						|  | ) | 
					
						
						|  | infos.append("%s->Success" % (os.path.basename(inp_path))) | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | except: | 
					
						
						|  | infos.append( | 
					
						
						|  | "%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) | 
					
						
						|  | ) | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | except: | 
					
						
						|  | infos.append(traceback.format_exc()) | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | finally: | 
					
						
						|  | try: | 
					
						
						|  | if model_name == "onnx_dereverb_By_FoxJoy": | 
					
						
						|  | del pre_fun.pred.model | 
					
						
						|  | del pre_fun.pred.model_ | 
					
						
						|  | else: | 
					
						
						|  | del pre_fun.model | 
					
						
						|  | del pre_fun | 
					
						
						|  | except: | 
					
						
						|  | traceback.print_exc() | 
					
						
						|  | print("clean_empty_cache") | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_vc(sid, to_return_protect0, to_return_protect1): | 
					
						
						|  | global n_spk, tgt_sr, net_g, vc, cpt, version | 
					
						
						|  | if sid == "" or sid == []: | 
					
						
						|  | global hubert_model | 
					
						
						|  | if hubert_model is not None: | 
					
						
						|  | print("clean_empty_cache") | 
					
						
						|  | del net_g, n_spk, vc, hubert_model, tgt_sr | 
					
						
						|  | hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | if_f0 = cpt.get("f0", 1) | 
					
						
						|  | version = cpt.get("version", "v1") | 
					
						
						|  | if version == "v1": | 
					
						
						|  | if if_f0 == 1: | 
					
						
						|  | net_g = SynthesizerTrnMs256NSFsid( | 
					
						
						|  | *cpt["config"], is_half=config.is_half | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | 
					
						
						|  | elif version == "v2": | 
					
						
						|  | if if_f0 == 1: | 
					
						
						|  | net_g = SynthesizerTrnMs768NSFsid( | 
					
						
						|  | *cpt["config"], is_half=config.is_half | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | 
					
						
						|  | del net_g, cpt | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | cpt = None | 
					
						
						|  | return {"visible": False, "__type__": "update"} | 
					
						
						|  | person = "%s/%s" % (weight_root, sid) | 
					
						
						|  | print("loading %s" % person) | 
					
						
						|  | cpt = torch.load(person, map_location="cpu") | 
					
						
						|  | tgt_sr = cpt["config"][-1] | 
					
						
						|  | cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | 
					
						
						|  | if_f0 = cpt.get("f0", 1) | 
					
						
						|  | if if_f0 == 0: | 
					
						
						|  | to_return_protect0 = to_return_protect1 = { | 
					
						
						|  | "visible": False, | 
					
						
						|  | "value": 0.5, | 
					
						
						|  | "__type__": "update", | 
					
						
						|  | } | 
					
						
						|  | else: | 
					
						
						|  | to_return_protect0 = { | 
					
						
						|  | "visible": True, | 
					
						
						|  | "value": to_return_protect0, | 
					
						
						|  | "__type__": "update", | 
					
						
						|  | } | 
					
						
						|  | to_return_protect1 = { | 
					
						
						|  | "visible": True, | 
					
						
						|  | "value": to_return_protect1, | 
					
						
						|  | "__type__": "update", | 
					
						
						|  | } | 
					
						
						|  | version = cpt.get("version", "v1") | 
					
						
						|  | if version == "v1": | 
					
						
						|  | if if_f0 == 1: | 
					
						
						|  | net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) | 
					
						
						|  | else: | 
					
						
						|  | net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | 
					
						
						|  | elif version == "v2": | 
					
						
						|  | if if_f0 == 1: | 
					
						
						|  | net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) | 
					
						
						|  | else: | 
					
						
						|  | net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | 
					
						
						|  | del net_g.enc_q | 
					
						
						|  | print(net_g.load_state_dict(cpt["weight"], strict=False)) | 
					
						
						|  | net_g.eval().to(config.device) | 
					
						
						|  | if config.is_half: | 
					
						
						|  | net_g = net_g.half() | 
					
						
						|  | else: | 
					
						
						|  | net_g = net_g.float() | 
					
						
						|  | vc = VC(tgt_sr, config) | 
					
						
						|  | n_spk = cpt["config"][-3] | 
					
						
						|  | return ( | 
					
						
						|  | {"visible": True, "maximum": n_spk, "__type__": "update"}, | 
					
						
						|  | to_return_protect0, | 
					
						
						|  | to_return_protect1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def change_choices(): | 
					
						
						|  | names = [] | 
					
						
						|  | for name in os.listdir(weight_root): | 
					
						
						|  | if name.endswith(".pth"): | 
					
						
						|  | names.append(name) | 
					
						
						|  | index_paths = [] | 
					
						
						|  | for root, dirs, files in os.walk(index_root, topdown=False): | 
					
						
						|  | for name in files: | 
					
						
						|  | if name.endswith(".index") and "trained" not in name: | 
					
						
						|  | index_paths.append("%s/%s" % (root, name)) | 
					
						
						|  | return {"choices": sorted(names), "__type__": "update"}, { | 
					
						
						|  | "choices": sorted(index_paths), | 
					
						
						|  | "__type__": "update", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def clean(): | 
					
						
						|  | return {"value": "", "__type__": "update"} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sr_dict = { | 
					
						
						|  | "32k": 32000, | 
					
						
						|  | "40k": 40000, | 
					
						
						|  | "48k": 48000, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def if_done(done, p): | 
					
						
						|  | while 1: | 
					
						
						|  | if p.poll() is None: | 
					
						
						|  | sleep(0.5) | 
					
						
						|  | else: | 
					
						
						|  | break | 
					
						
						|  | done[0] = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def if_done_multi(done, ps): | 
					
						
						|  | while 1: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | flag = 1 | 
					
						
						|  | for p in ps: | 
					
						
						|  | if p.poll() is None: | 
					
						
						|  | flag = 0 | 
					
						
						|  | sleep(0.5) | 
					
						
						|  | break | 
					
						
						|  | if flag == 1: | 
					
						
						|  | break | 
					
						
						|  | done[0] = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def preprocess_dataset(trainset_dir, exp_dir, sr, n_p): | 
					
						
						|  | sr = sr_dict[sr] | 
					
						
						|  | os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | 
					
						
						|  | f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") | 
					
						
						|  | f.close() | 
					
						
						|  | cmd = ( | 
					
						
						|  | config.python_cmd | 
					
						
						|  | + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s " | 
					
						
						|  | % (trainset_dir, sr, n_p, now_dir, exp_dir) | 
					
						
						|  | + str(config.noparallel) | 
					
						
						|  | ) | 
					
						
						|  | print(cmd) | 
					
						
						|  | p = Popen(cmd, shell=True) | 
					
						
						|  |  | 
					
						
						|  | done = [False] | 
					
						
						|  | threading.Thread( | 
					
						
						|  | target=if_done, | 
					
						
						|  | args=( | 
					
						
						|  | done, | 
					
						
						|  | p, | 
					
						
						|  | ), | 
					
						
						|  | ).start() | 
					
						
						|  | while 1: | 
					
						
						|  | with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | 
					
						
						|  | yield (f.read()) | 
					
						
						|  | sleep(1) | 
					
						
						|  | if done[0]: | 
					
						
						|  | break | 
					
						
						|  | with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | 
					
						
						|  | log = f.read() | 
					
						
						|  | print(log) | 
					
						
						|  | yield log | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl): | 
					
						
						|  | gpus = gpus.split("-") | 
					
						
						|  | os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | 
					
						
						|  | f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") | 
					
						
						|  | f.close() | 
					
						
						|  | if if_f0: | 
					
						
						|  | cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % ( | 
					
						
						|  | now_dir, | 
					
						
						|  | exp_dir, | 
					
						
						|  | n_p, | 
					
						
						|  | f0method, | 
					
						
						|  | echl, | 
					
						
						|  | ) | 
					
						
						|  | print(cmd) | 
					
						
						|  | p = Popen(cmd, shell=True, cwd=now_dir) | 
					
						
						|  |  | 
					
						
						|  | done = [False] | 
					
						
						|  | threading.Thread( | 
					
						
						|  | target=if_done, | 
					
						
						|  | args=( | 
					
						
						|  | done, | 
					
						
						|  | p, | 
					
						
						|  | ), | 
					
						
						|  | ).start() | 
					
						
						|  | while 1: | 
					
						
						|  | with open( | 
					
						
						|  | "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" | 
					
						
						|  | ) as f: | 
					
						
						|  | yield (f.read()) | 
					
						
						|  | sleep(1) | 
					
						
						|  | if done[0]: | 
					
						
						|  | break | 
					
						
						|  | with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | 
					
						
						|  | log = f.read() | 
					
						
						|  | print(log) | 
					
						
						|  | yield log | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | n_part=int(sys.argv[1]) | 
					
						
						|  | i_part=int(sys.argv[2]) | 
					
						
						|  | i_gpu=sys.argv[3] | 
					
						
						|  | exp_dir=sys.argv[4] | 
					
						
						|  | os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) | 
					
						
						|  | """ | 
					
						
						|  | leng = len(gpus) | 
					
						
						|  | ps = [] | 
					
						
						|  | for idx, n_g in enumerate(gpus): | 
					
						
						|  | cmd = ( | 
					
						
						|  | config.python_cmd | 
					
						
						|  | + " extract_feature_print.py %s %s %s %s %s/logs/%s %s" | 
					
						
						|  | % ( | 
					
						
						|  | config.device, | 
					
						
						|  | leng, | 
					
						
						|  | idx, | 
					
						
						|  | n_g, | 
					
						
						|  | now_dir, | 
					
						
						|  | exp_dir, | 
					
						
						|  | version19, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | print(cmd) | 
					
						
						|  | p = Popen( | 
					
						
						|  | cmd, shell=True, cwd=now_dir | 
					
						
						|  | ) | 
					
						
						|  | ps.append(p) | 
					
						
						|  |  | 
					
						
						|  | done = [False] | 
					
						
						|  | threading.Thread( | 
					
						
						|  | target=if_done_multi, | 
					
						
						|  | args=( | 
					
						
						|  | done, | 
					
						
						|  | ps, | 
					
						
						|  | ), | 
					
						
						|  | ).start() | 
					
						
						|  | while 1: | 
					
						
						|  | with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | 
					
						
						|  | yield (f.read()) | 
					
						
						|  | sleep(1) | 
					
						
						|  | if done[0]: | 
					
						
						|  | break | 
					
						
						|  | with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | 
					
						
						|  | log = f.read() | 
					
						
						|  | print(log) | 
					
						
						|  | yield log | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def change_sr2(sr2, if_f0_3, version19): | 
					
						
						|  | path_str = "" if version19 == "v1" else "_v2" | 
					
						
						|  | f0_str = "f0" if if_f0_3 else "" | 
					
						
						|  | if_pretrained_generator_exist = os.access( | 
					
						
						|  | "pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK | 
					
						
						|  | ) | 
					
						
						|  | if_pretrained_discriminator_exist = os.access( | 
					
						
						|  | "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK | 
					
						
						|  | ) | 
					
						
						|  | if not if_pretrained_generator_exist: | 
					
						
						|  | print( | 
					
						
						|  | "pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), | 
					
						
						|  | "not exist, will not use pretrained model", | 
					
						
						|  | ) | 
					
						
						|  | if not if_pretrained_discriminator_exist: | 
					
						
						|  | print( | 
					
						
						|  | "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), | 
					
						
						|  | "not exist, will not use pretrained model", | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | "pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) | 
					
						
						|  | if if_pretrained_generator_exist | 
					
						
						|  | else "", | 
					
						
						|  | "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) | 
					
						
						|  | if if_pretrained_discriminator_exist | 
					
						
						|  | else "", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def change_version19(sr2, if_f0_3, version19): | 
					
						
						|  | path_str = "" if version19 == "v1" else "_v2" | 
					
						
						|  | if sr2 == "32k" and version19 == "v1": | 
					
						
						|  | sr2 = "40k" | 
					
						
						|  | to_return_sr2 = ( | 
					
						
						|  | {"choices": ["40k", "48k"], "__type__": "update", "value": sr2} | 
					
						
						|  | if version19 == "v1" | 
					
						
						|  | else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2} | 
					
						
						|  | ) | 
					
						
						|  | f0_str = "f0" if if_f0_3 else "" | 
					
						
						|  | if_pretrained_generator_exist = os.access( | 
					
						
						|  | "pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK | 
					
						
						|  | ) | 
					
						
						|  | if_pretrained_discriminator_exist = os.access( | 
					
						
						|  | "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK | 
					
						
						|  | ) | 
					
						
						|  | if not if_pretrained_generator_exist: | 
					
						
						|  | print( | 
					
						
						|  | "pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), | 
					
						
						|  | "not exist, will not use pretrained model", | 
					
						
						|  | ) | 
					
						
						|  | if not if_pretrained_discriminator_exist: | 
					
						
						|  | print( | 
					
						
						|  | "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), | 
					
						
						|  | "not exist, will not use pretrained model", | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | "pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) | 
					
						
						|  | if if_pretrained_generator_exist | 
					
						
						|  | else "", | 
					
						
						|  | "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) | 
					
						
						|  | if if_pretrained_discriminator_exist | 
					
						
						|  | else "", | 
					
						
						|  | to_return_sr2, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def change_f0(if_f0_3, sr2, version19): | 
					
						
						|  | path_str = "" if version19 == "v1" else "_v2" | 
					
						
						|  | if_pretrained_generator_exist = os.access( | 
					
						
						|  | "pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK | 
					
						
						|  | ) | 
					
						
						|  | if_pretrained_discriminator_exist = os.access( | 
					
						
						|  | "pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK | 
					
						
						|  | ) | 
					
						
						|  | if not if_pretrained_generator_exist: | 
					
						
						|  | print( | 
					
						
						|  | "pretrained%s/f0G%s.pth" % (path_str, sr2), | 
					
						
						|  | "not exist, will not use pretrained model", | 
					
						
						|  | ) | 
					
						
						|  | if not if_pretrained_discriminator_exist: | 
					
						
						|  | print( | 
					
						
						|  | "pretrained%s/f0D%s.pth" % (path_str, sr2), | 
					
						
						|  | "not exist, will not use pretrained model", | 
					
						
						|  | ) | 
					
						
						|  | if if_f0_3: | 
					
						
						|  | return ( | 
					
						
						|  | {"visible": True, "__type__": "update"}, | 
					
						
						|  | "pretrained%s/f0G%s.pth" % (path_str, sr2) | 
					
						
						|  | if if_pretrained_generator_exist | 
					
						
						|  | else "", | 
					
						
						|  | "pretrained%s/f0D%s.pth" % (path_str, sr2) | 
					
						
						|  | if if_pretrained_discriminator_exist | 
					
						
						|  | else "", | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | {"visible": False, "__type__": "update"}, | 
					
						
						|  | ("pretrained%s/G%s.pth" % (path_str, sr2)) | 
					
						
						|  | if if_pretrained_generator_exist | 
					
						
						|  | else "", | 
					
						
						|  | ("pretrained%s/D%s.pth" % (path_str, sr2)) | 
					
						
						|  | if if_pretrained_discriminator_exist | 
					
						
						|  | else "", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def click_train( | 
					
						
						|  | exp_dir1, | 
					
						
						|  | sr2, | 
					
						
						|  | if_f0_3, | 
					
						
						|  | spk_id5, | 
					
						
						|  | save_epoch10, | 
					
						
						|  | total_epoch11, | 
					
						
						|  | batch_size12, | 
					
						
						|  | if_save_latest13, | 
					
						
						|  | pretrained_G14, | 
					
						
						|  | pretrained_D15, | 
					
						
						|  | gpus16, | 
					
						
						|  | if_cache_gpu17, | 
					
						
						|  | if_save_every_weights18, | 
					
						
						|  | version19, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | 
					
						
						|  | os.makedirs(exp_dir, exist_ok=True) | 
					
						
						|  | gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) | 
					
						
						|  | feature_dir = ( | 
					
						
						|  | "%s/3_feature256" % (exp_dir) | 
					
						
						|  | if version19 == "v1" | 
					
						
						|  | else "%s/3_feature768" % (exp_dir) | 
					
						
						|  | ) | 
					
						
						|  | if if_f0_3: | 
					
						
						|  | f0_dir = "%s/2a_f0" % (exp_dir) | 
					
						
						|  | f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) | 
					
						
						|  | names = ( | 
					
						
						|  | set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) | 
					
						
						|  | & set([name.split(".")[0] for name in os.listdir(feature_dir)]) | 
					
						
						|  | & set([name.split(".")[0] for name in os.listdir(f0_dir)]) | 
					
						
						|  | & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( | 
					
						
						|  | [name.split(".")[0] for name in os.listdir(feature_dir)] | 
					
						
						|  | ) | 
					
						
						|  | opt = [] | 
					
						
						|  | for name in names: | 
					
						
						|  | if if_f0_3: | 
					
						
						|  | opt.append( | 
					
						
						|  | "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" | 
					
						
						|  | % ( | 
					
						
						|  | gt_wavs_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | feature_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | f0_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | f0nsf_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | spk_id5, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | opt.append( | 
					
						
						|  | "%s/%s.wav|%s/%s.npy|%s" | 
					
						
						|  | % ( | 
					
						
						|  | gt_wavs_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | feature_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | spk_id5, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | fea_dim = 256 if version19 == "v1" else 768 | 
					
						
						|  | if if_f0_3: | 
					
						
						|  | for _ in range(2): | 
					
						
						|  | opt.append( | 
					
						
						|  | "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" | 
					
						
						|  | % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | for _ in range(2): | 
					
						
						|  | opt.append( | 
					
						
						|  | "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" | 
					
						
						|  | % (now_dir, sr2, now_dir, fea_dim, spk_id5) | 
					
						
						|  | ) | 
					
						
						|  | shuffle(opt) | 
					
						
						|  | with open("%s/filelist.txt" % exp_dir, "w") as f: | 
					
						
						|  | f.write("\n".join(opt)) | 
					
						
						|  | print("write filelist done") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print("use gpus:", gpus16) | 
					
						
						|  | if pretrained_G14 == "": | 
					
						
						|  | print("no pretrained Generator") | 
					
						
						|  | if pretrained_D15 == "": | 
					
						
						|  | print("no pretrained Discriminator") | 
					
						
						|  | if gpus16: | 
					
						
						|  | cmd = ( | 
					
						
						|  | config.python_cmd | 
					
						
						|  | + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" | 
					
						
						|  | % ( | 
					
						
						|  | exp_dir1, | 
					
						
						|  | sr2, | 
					
						
						|  | 1 if if_f0_3 else 0, | 
					
						
						|  | batch_size12, | 
					
						
						|  | gpus16, | 
					
						
						|  | total_epoch11, | 
					
						
						|  | save_epoch10, | 
					
						
						|  | "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | 
					
						
						|  | "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | 
					
						
						|  | 1 if if_save_latest13 == i18n("是") else 0, | 
					
						
						|  | 1 if if_cache_gpu17 == i18n("是") else 0, | 
					
						
						|  | 1 if if_save_every_weights18 == i18n("是") else 0, | 
					
						
						|  | version19, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | cmd = ( | 
					
						
						|  | config.python_cmd | 
					
						
						|  | + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" | 
					
						
						|  | % ( | 
					
						
						|  | exp_dir1, | 
					
						
						|  | sr2, | 
					
						
						|  | 1 if if_f0_3 else 0, | 
					
						
						|  | batch_size12, | 
					
						
						|  | total_epoch11, | 
					
						
						|  | save_epoch10, | 
					
						
						|  | "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "\b", | 
					
						
						|  | "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "\b", | 
					
						
						|  | 1 if if_save_latest13 == i18n("是") else 0, | 
					
						
						|  | 1 if if_cache_gpu17 == i18n("是") else 0, | 
					
						
						|  | 1 if if_save_every_weights18 == i18n("是") else 0, | 
					
						
						|  | version19, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | print(cmd) | 
					
						
						|  | p = Popen(cmd, shell=True, cwd=now_dir) | 
					
						
						|  | p.wait() | 
					
						
						|  | return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def train_index(exp_dir1, version19): | 
					
						
						|  | exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | 
					
						
						|  | os.makedirs(exp_dir, exist_ok=True) | 
					
						
						|  | feature_dir = ( | 
					
						
						|  | "%s/3_feature256" % (exp_dir) | 
					
						
						|  | if version19 == "v1" | 
					
						
						|  | else "%s/3_feature768" % (exp_dir) | 
					
						
						|  | ) | 
					
						
						|  | if not os.path.exists(feature_dir): | 
					
						
						|  | return "请先进行特征提取!" | 
					
						
						|  | listdir_res = list(os.listdir(feature_dir)) | 
					
						
						|  | if len(listdir_res) == 0: | 
					
						
						|  | return "请先进行特征提取!" | 
					
						
						|  | infos = [] | 
					
						
						|  | npys = [] | 
					
						
						|  | for name in sorted(listdir_res): | 
					
						
						|  | phone = np.load("%s/%s" % (feature_dir, name)) | 
					
						
						|  | npys.append(phone) | 
					
						
						|  | big_npy = np.concatenate(npys, 0) | 
					
						
						|  | big_npy_idx = np.arange(big_npy.shape[0]) | 
					
						
						|  | np.random.shuffle(big_npy_idx) | 
					
						
						|  | big_npy = big_npy[big_npy_idx] | 
					
						
						|  | if big_npy.shape[0] > 2e5: | 
					
						
						|  |  | 
					
						
						|  | infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]) | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | try: | 
					
						
						|  | big_npy = ( | 
					
						
						|  | MiniBatchKMeans( | 
					
						
						|  | n_clusters=10000, | 
					
						
						|  | verbose=True, | 
					
						
						|  | batch_size=256 * config.n_cpu, | 
					
						
						|  | compute_labels=False, | 
					
						
						|  | init="random", | 
					
						
						|  | ) | 
					
						
						|  | .fit(big_npy) | 
					
						
						|  | .cluster_centers_ | 
					
						
						|  | ) | 
					
						
						|  | except: | 
					
						
						|  | info = traceback.format_exc() | 
					
						
						|  | print(info) | 
					
						
						|  | infos.append(info) | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  |  | 
					
						
						|  | np.save("%s/total_fea.npy" % exp_dir, big_npy) | 
					
						
						|  | n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | 
					
						
						|  | infos.append("%s,%s" % (big_npy.shape, n_ivf)) | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) | 
					
						
						|  |  | 
					
						
						|  | infos.append("training") | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | index_ivf = faiss.extract_index_ivf(index) | 
					
						
						|  | index_ivf.nprobe = 1 | 
					
						
						|  | index.train(big_npy) | 
					
						
						|  | faiss.write_index( | 
					
						
						|  | index, | 
					
						
						|  | "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" | 
					
						
						|  | % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | infos.append("adding") | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  | batch_size_add = 8192 | 
					
						
						|  | for i in range(0, big_npy.shape[0], batch_size_add): | 
					
						
						|  | index.add(big_npy[i : i + batch_size_add]) | 
					
						
						|  | faiss.write_index( | 
					
						
						|  | index, | 
					
						
						|  | "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" | 
					
						
						|  | % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | 
					
						
						|  | ) | 
					
						
						|  | infos.append( | 
					
						
						|  | "成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index" | 
					
						
						|  | % (n_ivf, index_ivf.nprobe, exp_dir1, version19) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | yield "\n".join(infos) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def train1key( | 
					
						
						|  | exp_dir1, | 
					
						
						|  | sr2, | 
					
						
						|  | if_f0_3, | 
					
						
						|  | trainset_dir4, | 
					
						
						|  | spk_id5, | 
					
						
						|  | np7, | 
					
						
						|  | f0method8, | 
					
						
						|  | save_epoch10, | 
					
						
						|  | total_epoch11, | 
					
						
						|  | batch_size12, | 
					
						
						|  | if_save_latest13, | 
					
						
						|  | pretrained_G14, | 
					
						
						|  | pretrained_D15, | 
					
						
						|  | gpus16, | 
					
						
						|  | if_cache_gpu17, | 
					
						
						|  | if_save_every_weights18, | 
					
						
						|  | version19, | 
					
						
						|  | echl | 
					
						
						|  | ): | 
					
						
						|  | infos = [] | 
					
						
						|  |  | 
					
						
						|  | def get_info_str(strr): | 
					
						
						|  | infos.append(strr) | 
					
						
						|  | return "\n".join(infos) | 
					
						
						|  |  | 
					
						
						|  | model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1) | 
					
						
						|  | preprocess_log_path = "%s/preprocess.log" % model_log_dir | 
					
						
						|  | extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir | 
					
						
						|  | gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir | 
					
						
						|  | feature_dir = ( | 
					
						
						|  | "%s/3_feature256" % model_log_dir | 
					
						
						|  | if version19 == "v1" | 
					
						
						|  | else "%s/3_feature768" % model_log_dir | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | os.makedirs(model_log_dir, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  | open(preprocess_log_path, "w").close() | 
					
						
						|  | cmd = ( | 
					
						
						|  | config.python_cmd | 
					
						
						|  | + " trainset_preprocess_pipeline_print.py %s %s %s %s " | 
					
						
						|  | % (trainset_dir4, sr_dict[sr2], np7, model_log_dir) | 
					
						
						|  | + str(config.noparallel) | 
					
						
						|  | ) | 
					
						
						|  | yield get_info_str(i18n("step1:正在处理数据")) | 
					
						
						|  | yield get_info_str(cmd) | 
					
						
						|  | p = Popen(cmd, shell=True) | 
					
						
						|  | p.wait() | 
					
						
						|  | with open(preprocess_log_path, "r") as f: | 
					
						
						|  | print(f.read()) | 
					
						
						|  |  | 
					
						
						|  | open(extract_f0_feature_log_path, "w") | 
					
						
						|  | if if_f0_3: | 
					
						
						|  | yield get_info_str("step2a:正在提取音高") | 
					
						
						|  | cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % ( | 
					
						
						|  | model_log_dir, | 
					
						
						|  | np7, | 
					
						
						|  | f0method8, | 
					
						
						|  | echl | 
					
						
						|  | ) | 
					
						
						|  | yield get_info_str(cmd) | 
					
						
						|  | p = Popen(cmd, shell=True, cwd=now_dir) | 
					
						
						|  | p.wait() | 
					
						
						|  | with open(extract_f0_feature_log_path, "r") as f: | 
					
						
						|  | print(f.read()) | 
					
						
						|  | else: | 
					
						
						|  | yield get_info_str(i18n("step2a:无需提取音高")) | 
					
						
						|  |  | 
					
						
						|  | yield get_info_str(i18n("step2b:正在提取特征")) | 
					
						
						|  | gpus = gpus16.split("-") | 
					
						
						|  | leng = len(gpus) | 
					
						
						|  | ps = [] | 
					
						
						|  | for idx, n_g in enumerate(gpus): | 
					
						
						|  | cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % ( | 
					
						
						|  | config.device, | 
					
						
						|  | leng, | 
					
						
						|  | idx, | 
					
						
						|  | n_g, | 
					
						
						|  | model_log_dir, | 
					
						
						|  | version19, | 
					
						
						|  | ) | 
					
						
						|  | yield get_info_str(cmd) | 
					
						
						|  | p = Popen( | 
					
						
						|  | cmd, shell=True, cwd=now_dir | 
					
						
						|  | ) | 
					
						
						|  | ps.append(p) | 
					
						
						|  | for p in ps: | 
					
						
						|  | p.wait() | 
					
						
						|  | with open(extract_f0_feature_log_path, "r") as f: | 
					
						
						|  | print(f.read()) | 
					
						
						|  |  | 
					
						
						|  | yield get_info_str(i18n("step3a:正在训练模型")) | 
					
						
						|  |  | 
					
						
						|  | if if_f0_3: | 
					
						
						|  | f0_dir = "%s/2a_f0" % model_log_dir | 
					
						
						|  | f0nsf_dir = "%s/2b-f0nsf" % model_log_dir | 
					
						
						|  | names = ( | 
					
						
						|  | set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) | 
					
						
						|  | & set([name.split(".")[0] for name in os.listdir(feature_dir)]) | 
					
						
						|  | & set([name.split(".")[0] for name in os.listdir(f0_dir)]) | 
					
						
						|  | & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( | 
					
						
						|  | [name.split(".")[0] for name in os.listdir(feature_dir)] | 
					
						
						|  | ) | 
					
						
						|  | opt = [] | 
					
						
						|  | for name in names: | 
					
						
						|  | if if_f0_3: | 
					
						
						|  | opt.append( | 
					
						
						|  | "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" | 
					
						
						|  | % ( | 
					
						
						|  | gt_wavs_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | feature_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | f0_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | f0nsf_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | spk_id5, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | opt.append( | 
					
						
						|  | "%s/%s.wav|%s/%s.npy|%s" | 
					
						
						|  | % ( | 
					
						
						|  | gt_wavs_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | feature_dir.replace("\\", "\\\\"), | 
					
						
						|  | name, | 
					
						
						|  | spk_id5, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | fea_dim = 256 if version19 == "v1" else 768 | 
					
						
						|  | if if_f0_3: | 
					
						
						|  | for _ in range(2): | 
					
						
						|  | opt.append( | 
					
						
						|  | "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" | 
					
						
						|  | % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | for _ in range(2): | 
					
						
						|  | opt.append( | 
					
						
						|  | "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" | 
					
						
						|  | % (now_dir, sr2, now_dir, fea_dim, spk_id5) | 
					
						
						|  | ) | 
					
						
						|  | shuffle(opt) | 
					
						
						|  | with open("%s/filelist.txt" % model_log_dir, "w") as f: | 
					
						
						|  | f.write("\n".join(opt)) | 
					
						
						|  | yield get_info_str("write filelist done") | 
					
						
						|  | if gpus16: | 
					
						
						|  | cmd = ( | 
					
						
						|  | config.python_cmd | 
					
						
						|  | + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" | 
					
						
						|  | % ( | 
					
						
						|  | exp_dir1, | 
					
						
						|  | sr2, | 
					
						
						|  | 1 if if_f0_3 else 0, | 
					
						
						|  | batch_size12, | 
					
						
						|  | gpus16, | 
					
						
						|  | total_epoch11, | 
					
						
						|  | save_epoch10, | 
					
						
						|  | "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | 
					
						
						|  | "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | 
					
						
						|  | 1 if if_save_latest13 == i18n("是") else 0, | 
					
						
						|  | 1 if if_cache_gpu17 == i18n("是") else 0, | 
					
						
						|  | 1 if if_save_every_weights18 == i18n("是") else 0, | 
					
						
						|  | version19, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | cmd = ( | 
					
						
						|  | config.python_cmd | 
					
						
						|  | + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" | 
					
						
						|  | % ( | 
					
						
						|  | exp_dir1, | 
					
						
						|  | sr2, | 
					
						
						|  | 1 if if_f0_3 else 0, | 
					
						
						|  | batch_size12, | 
					
						
						|  | total_epoch11, | 
					
						
						|  | save_epoch10, | 
					
						
						|  | "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | 
					
						
						|  | "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | 
					
						
						|  | 1 if if_save_latest13 == i18n("是") else 0, | 
					
						
						|  | 1 if if_cache_gpu17 == i18n("是") else 0, | 
					
						
						|  | 1 if if_save_every_weights18 == i18n("是") else 0, | 
					
						
						|  | version19, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | yield get_info_str(cmd) | 
					
						
						|  | p = Popen(cmd, shell=True, cwd=now_dir) | 
					
						
						|  | p.wait() | 
					
						
						|  | yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")) | 
					
						
						|  |  | 
					
						
						|  | npys = [] | 
					
						
						|  | listdir_res = list(os.listdir(feature_dir)) | 
					
						
						|  | for name in sorted(listdir_res): | 
					
						
						|  | phone = np.load("%s/%s" % (feature_dir, name)) | 
					
						
						|  | npys.append(phone) | 
					
						
						|  | big_npy = np.concatenate(npys, 0) | 
					
						
						|  |  | 
					
						
						|  | big_npy_idx = np.arange(big_npy.shape[0]) | 
					
						
						|  | np.random.shuffle(big_npy_idx) | 
					
						
						|  | big_npy = big_npy[big_npy_idx] | 
					
						
						|  |  | 
					
						
						|  | if big_npy.shape[0] > 2e5: | 
					
						
						|  |  | 
					
						
						|  | info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0] | 
					
						
						|  | print(info) | 
					
						
						|  | yield get_info_str(info) | 
					
						
						|  | try: | 
					
						
						|  | big_npy = ( | 
					
						
						|  | MiniBatchKMeans( | 
					
						
						|  | n_clusters=10000, | 
					
						
						|  | verbose=True, | 
					
						
						|  | batch_size=256 * config.n_cpu, | 
					
						
						|  | compute_labels=False, | 
					
						
						|  | init="random", | 
					
						
						|  | ) | 
					
						
						|  | .fit(big_npy) | 
					
						
						|  | .cluster_centers_ | 
					
						
						|  | ) | 
					
						
						|  | except: | 
					
						
						|  | info = traceback.format_exc() | 
					
						
						|  | print(info) | 
					
						
						|  | yield get_info_str(info) | 
					
						
						|  |  | 
					
						
						|  | np.save("%s/total_fea.npy" % model_log_dir, big_npy) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | 
					
						
						|  | yield get_info_str("%s,%s" % (big_npy.shape, n_ivf)) | 
					
						
						|  | index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) | 
					
						
						|  | yield get_info_str("training index") | 
					
						
						|  | index_ivf = faiss.extract_index_ivf(index) | 
					
						
						|  | index_ivf.nprobe = 1 | 
					
						
						|  | index.train(big_npy) | 
					
						
						|  | faiss.write_index( | 
					
						
						|  | index, | 
					
						
						|  | "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" | 
					
						
						|  | % (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | 
					
						
						|  | ) | 
					
						
						|  | yield get_info_str("adding index") | 
					
						
						|  | batch_size_add = 8192 | 
					
						
						|  | for i in range(0, big_npy.shape[0], batch_size_add): | 
					
						
						|  | index.add(big_npy[i : i + batch_size_add]) | 
					
						
						|  | faiss.write_index( | 
					
						
						|  | index, | 
					
						
						|  | "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" | 
					
						
						|  | % (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | 
					
						
						|  | ) | 
					
						
						|  | yield get_info_str( | 
					
						
						|  | "成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index" | 
					
						
						|  | % (n_ivf, index_ivf.nprobe, exp_dir1, version19) | 
					
						
						|  | ) | 
					
						
						|  | yield get_info_str(i18n("全流程结束!")) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def change_info_(ckpt_path): | 
					
						
						|  | if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")): | 
					
						
						|  | return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} | 
					
						
						|  | try: | 
					
						
						|  | with open( | 
					
						
						|  | ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" | 
					
						
						|  | ) as f: | 
					
						
						|  | info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) | 
					
						
						|  | sr, f0 = info["sample_rate"], info["if_f0"] | 
					
						
						|  | version = "v2" if ("version" in info and info["version"] == "v2") else "v1" | 
					
						
						|  | return sr, str(f0), version | 
					
						
						|  | except: | 
					
						
						|  | traceback.print_exc() | 
					
						
						|  | return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def export_onnx(ModelPath, ExportedPath): | 
					
						
						|  | cpt = torch.load(ModelPath, map_location="cpu") | 
					
						
						|  | cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | 
					
						
						|  | vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768 | 
					
						
						|  |  | 
					
						
						|  | test_phone = torch.rand(1, 200, vec_channels) | 
					
						
						|  | test_phone_lengths = torch.tensor([200]).long() | 
					
						
						|  | test_pitch = torch.randint(size=(1, 200), low=5, high=255) | 
					
						
						|  | test_pitchf = torch.rand(1, 200) | 
					
						
						|  | test_ds = torch.LongTensor([0]) | 
					
						
						|  | test_rnd = torch.rand(1, 192, 200) | 
					
						
						|  |  | 
					
						
						|  | device = "cpu" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | net_g = SynthesizerTrnMsNSFsidM( | 
					
						
						|  | *cpt["config"], is_half=False, version=cpt.get("version", "v1") | 
					
						
						|  | ) | 
					
						
						|  | net_g.load_state_dict(cpt["weight"], strict=False) | 
					
						
						|  | input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] | 
					
						
						|  | output_names = [ | 
					
						
						|  | "audio", | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | torch.onnx.export( | 
					
						
						|  | net_g, | 
					
						
						|  | ( | 
					
						
						|  | test_phone.to(device), | 
					
						
						|  | test_phone_lengths.to(device), | 
					
						
						|  | test_pitch.to(device), | 
					
						
						|  | test_pitchf.to(device), | 
					
						
						|  | test_ds.to(device), | 
					
						
						|  | test_rnd.to(device), | 
					
						
						|  | ), | 
					
						
						|  | ExportedPath, | 
					
						
						|  | dynamic_axes={ | 
					
						
						|  | "phone": [1], | 
					
						
						|  | "pitch": [1], | 
					
						
						|  | "pitchf": [1], | 
					
						
						|  | "rnd": [2], | 
					
						
						|  | }, | 
					
						
						|  | do_constant_folding=False, | 
					
						
						|  | opset_version=13, | 
					
						
						|  | verbose=False, | 
					
						
						|  | input_names=input_names, | 
					
						
						|  | output_names=output_names, | 
					
						
						|  | ) | 
					
						
						|  | return "Finished" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import re as regex | 
					
						
						|  | import scipy.io.wavfile as wavfile | 
					
						
						|  |  | 
					
						
						|  | cli_current_page = "HOME" | 
					
						
						|  |  | 
					
						
						|  | def cli_split_command(com): | 
					
						
						|  | exp = r'(?:(?<=\s)|^)"(.*?)"(?=\s|$)|(\S+)' | 
					
						
						|  | split_array = regex.findall(exp, com) | 
					
						
						|  | split_array = [group[0] if group[0] else group[1] for group in split_array] | 
					
						
						|  | return split_array | 
					
						
						|  |  | 
					
						
						|  | def execute_generator_function(genObject): | 
					
						
						|  | for _ in genObject: pass | 
					
						
						|  |  | 
					
						
						|  | def cli_infer(com): | 
					
						
						|  |  | 
					
						
						|  | com = cli_split_command(com) | 
					
						
						|  | model_name = com[0] | 
					
						
						|  | source_audio_path = com[1] | 
					
						
						|  | output_file_name = com[2] | 
					
						
						|  | feature_index_path = com[3] | 
					
						
						|  | f0_file = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | speaker_id = int(com[4]) | 
					
						
						|  | transposition = float(com[5]) | 
					
						
						|  | f0_method = com[6] | 
					
						
						|  | crepe_hop_length = int(com[7]) | 
					
						
						|  | harvest_median_filter = int(com[8]) | 
					
						
						|  | resample = int(com[9]) | 
					
						
						|  | mix = float(com[10]) | 
					
						
						|  | feature_ratio = float(com[11]) | 
					
						
						|  | protection_amnt = float(com[12]) | 
					
						
						|  |  | 
					
						
						|  | print("Mangio-RVC-Fork Infer-CLI: Starting the inference...") | 
					
						
						|  | vc_data = get_vc(model_name) | 
					
						
						|  | print(vc_data) | 
					
						
						|  | print("Mangio-RVC-Fork Infer-CLI: Performing inference...") | 
					
						
						|  | conversion_data = vc_single( | 
					
						
						|  | speaker_id, | 
					
						
						|  | source_audio_path, | 
					
						
						|  | transposition, | 
					
						
						|  | f0_file, | 
					
						
						|  | f0_method, | 
					
						
						|  | feature_index_path, | 
					
						
						|  | feature_index_path, | 
					
						
						|  | feature_ratio, | 
					
						
						|  | harvest_median_filter, | 
					
						
						|  | resample, | 
					
						
						|  | mix, | 
					
						
						|  | protection_amnt, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | ) | 
					
						
						|  | if "Success." in conversion_data[0]: | 
					
						
						|  | print("Mangio-RVC-Fork Infer-CLI: Inference succeeded. Writing to %s/%s..." % ('audio-outputs', output_file_name)) | 
					
						
						|  | wavfile.write('%s/%s' % ('audio-outputs', output_file_name), conversion_data[1][0], conversion_data[1][1]) | 
					
						
						|  | print("Mangio-RVC-Fork Infer-CLI: Finished! Saved output to %s/%s" % ('audio-outputs', output_file_name)) | 
					
						
						|  | else: | 
					
						
						|  | print("Mangio-RVC-Fork Infer-CLI: Inference failed. Here's the traceback: ") | 
					
						
						|  | print(conversion_data[0]) | 
					
						
						|  |  | 
					
						
						|  | def cli_pre_process(com): | 
					
						
						|  | com = cli_split_command(com) | 
					
						
						|  | model_name = com[0] | 
					
						
						|  | trainset_directory = com[1] | 
					
						
						|  | sample_rate = com[2] | 
					
						
						|  | num_processes = int(com[3]) | 
					
						
						|  |  | 
					
						
						|  | print("Mangio-RVC-Fork Pre-process: Starting...") | 
					
						
						|  | generator = preprocess_dataset( | 
					
						
						|  | trainset_directory, | 
					
						
						|  | model_name, | 
					
						
						|  | sample_rate, | 
					
						
						|  | num_processes | 
					
						
						|  | ) | 
					
						
						|  | execute_generator_function(generator) | 
					
						
						|  | print("Mangio-RVC-Fork Pre-process: Finished") | 
					
						
						|  |  | 
					
						
						|  | def cli_extract_feature(com): | 
					
						
						|  | com = cli_split_command(com) | 
					
						
						|  | model_name = com[0] | 
					
						
						|  | gpus = com[1] | 
					
						
						|  | num_processes = int(com[2]) | 
					
						
						|  | has_pitch_guidance = True if (int(com[3]) == 1) else False | 
					
						
						|  | f0_method = com[4] | 
					
						
						|  | crepe_hop_length = int(com[5]) | 
					
						
						|  | version = com[6] | 
					
						
						|  |  | 
					
						
						|  | print("Mangio-RVC-CLI: Extract Feature Has Pitch: " + str(has_pitch_guidance)) | 
					
						
						|  | print("Mangio-RVC-CLI: Extract Feature Version: " + str(version)) | 
					
						
						|  | print("Mangio-RVC-Fork Feature Extraction: Starting...") | 
					
						
						|  | generator = extract_f0_feature( | 
					
						
						|  | gpus, | 
					
						
						|  | num_processes, | 
					
						
						|  | f0_method, | 
					
						
						|  | has_pitch_guidance, | 
					
						
						|  | model_name, | 
					
						
						|  | version, | 
					
						
						|  | crepe_hop_length | 
					
						
						|  | ) | 
					
						
						|  | execute_generator_function(generator) | 
					
						
						|  | print("Mangio-RVC-Fork Feature Extraction: Finished") | 
					
						
						|  |  | 
					
						
						|  | def cli_train(com): | 
					
						
						|  | com = cli_split_command(com) | 
					
						
						|  | model_name = com[0] | 
					
						
						|  | sample_rate = com[1] | 
					
						
						|  | has_pitch_guidance = True if (int(com[2]) == 1) else False | 
					
						
						|  | speaker_id = int(com[3]) | 
					
						
						|  | save_epoch_iteration = int(com[4]) | 
					
						
						|  | total_epoch = int(com[5]) | 
					
						
						|  | batch_size = int(com[6]) | 
					
						
						|  | gpu_card_slot_numbers = com[7] | 
					
						
						|  | if_save_latest = i18n("是") if (int(com[8]) == 1) else i18n("否") | 
					
						
						|  | if_cache_gpu = i18n("是") if (int(com[9]) == 1) else i18n("否") | 
					
						
						|  | if_save_every_weight = i18n("是") if (int(com[10]) == 1) else i18n("否") | 
					
						
						|  | version = com[11] | 
					
						
						|  |  | 
					
						
						|  | pretrained_base = "pretrained/" if version == "v1" else "pretrained_v2/" | 
					
						
						|  |  | 
					
						
						|  | g_pretrained_path = "%sf0G%s.pth" % (pretrained_base, sample_rate) | 
					
						
						|  | d_pretrained_path = "%sf0D%s.pth" % (pretrained_base, sample_rate) | 
					
						
						|  |  | 
					
						
						|  | print("Mangio-RVC-Fork Train-CLI: Training...") | 
					
						
						|  | click_train( | 
					
						
						|  | model_name, | 
					
						
						|  | sample_rate, | 
					
						
						|  | has_pitch_guidance, | 
					
						
						|  | speaker_id, | 
					
						
						|  | save_epoch_iteration, | 
					
						
						|  | total_epoch, | 
					
						
						|  | batch_size, | 
					
						
						|  | if_save_latest, | 
					
						
						|  | g_pretrained_path, | 
					
						
						|  | d_pretrained_path, | 
					
						
						|  | gpu_card_slot_numbers, | 
					
						
						|  | if_cache_gpu, | 
					
						
						|  | if_save_every_weight, | 
					
						
						|  | version | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def cli_train_feature(com): | 
					
						
						|  | com = cli_split_command(com) | 
					
						
						|  | model_name = com[0] | 
					
						
						|  | version = com[1] | 
					
						
						|  | print("Mangio-RVC-Fork Train Feature Index-CLI: Training... Please wait") | 
					
						
						|  | generator = train_index( | 
					
						
						|  | model_name, | 
					
						
						|  | version | 
					
						
						|  | ) | 
					
						
						|  | execute_generator_function(generator) | 
					
						
						|  | print("Mangio-RVC-Fork Train Feature Index-CLI: Done!") | 
					
						
						|  |  | 
					
						
						|  | def cli_extract_model(com): | 
					
						
						|  | com = cli_split_command(com) | 
					
						
						|  | model_path = com[0] | 
					
						
						|  | save_name = com[1] | 
					
						
						|  | sample_rate = com[2] | 
					
						
						|  | has_pitch_guidance = com[3] | 
					
						
						|  | info = com[4] | 
					
						
						|  | version = com[5] | 
					
						
						|  | extract_small_model_process = extract_small_model( | 
					
						
						|  | model_path, | 
					
						
						|  | save_name, | 
					
						
						|  | sample_rate, | 
					
						
						|  | has_pitch_guidance, | 
					
						
						|  | info, | 
					
						
						|  | version | 
					
						
						|  | ) | 
					
						
						|  | if extract_small_model_process == "Success.": | 
					
						
						|  | print("Mangio-RVC-Fork Extract Small Model: Success!") | 
					
						
						|  | else: | 
					
						
						|  | print(str(extract_small_model_process)) | 
					
						
						|  | print("Mangio-RVC-Fork Extract Small Model: Failed!") | 
					
						
						|  |  | 
					
						
						|  | def print_page_details(): | 
					
						
						|  | if cli_current_page == "HOME": | 
					
						
						|  | print("    go home            : Takes you back to home with a navigation list.") | 
					
						
						|  | print("    go infer           : Takes you to inference command execution.\n") | 
					
						
						|  | print("    go pre-process     : Takes you to training step.1) pre-process command execution.") | 
					
						
						|  | print("    go extract-feature : Takes you to training step.2) extract-feature command execution.") | 
					
						
						|  | print("    go train           : Takes you to training step.3) being or continue training command execution.") | 
					
						
						|  | print("    go train-feature   : Takes you to the train feature index command execution.\n") | 
					
						
						|  | print("    go extract-model   : Takes you to the extract small model command execution.") | 
					
						
						|  | elif cli_current_page == "INFER": | 
					
						
						|  | print("    arg 1) model name with .pth in ./weights: mi-test.pth") | 
					
						
						|  | print("    arg 2) source audio path: myFolder\\MySource.wav") | 
					
						
						|  | print("    arg 3) output file name to be placed in './audio-outputs': MyTest.wav") | 
					
						
						|  | print("    arg 4) feature index file path: logs/mi-test/added_IVF3042_Flat_nprobe_1.index") | 
					
						
						|  | print("    arg 5) speaker id: 0") | 
					
						
						|  | print("    arg 6) transposition: 0") | 
					
						
						|  | print("    arg 7) f0 method: harvest (pm, harvest, crepe, crepe-tiny, hybrid[x,x,x,x], mangio-crepe, mangio-crepe-tiny)") | 
					
						
						|  | print("    arg 8) crepe hop length: 160") | 
					
						
						|  | print("    arg 9) harvest median filter radius: 3 (0-7)") | 
					
						
						|  | print("    arg 10) post resample rate: 0") | 
					
						
						|  | print("    arg 11) mix volume envelope: 1") | 
					
						
						|  | print("    arg 12) feature index ratio: 0.78 (0-1)") | 
					
						
						|  | print("    arg 13) Voiceless Consonant Protection (Less Artifact): 0.33 (Smaller number = more protection. 0.50 means Dont Use.) \n") | 
					
						
						|  | print("Example: mi-test.pth saudio/Sidney.wav myTest.wav logs/mi-test/added_index.index 0 -2 harvest 160 3 0 1 0.95 0.33") | 
					
						
						|  | elif cli_current_page == "PRE-PROCESS": | 
					
						
						|  | print("    arg 1) Model folder name in ./logs: mi-test") | 
					
						
						|  | print("    arg 2) Trainset directory: mydataset (or) E:\\my-data-set") | 
					
						
						|  | print("    arg 3) Sample rate: 40k (32k, 40k, 48k)") | 
					
						
						|  | print("    arg 4) Number of CPU threads to use: 8 \n") | 
					
						
						|  | print("Example: mi-test mydataset 40k 24") | 
					
						
						|  | elif cli_current_page == "EXTRACT-FEATURE": | 
					
						
						|  | print("    arg 1) Model folder name in ./logs: mi-test") | 
					
						
						|  | print("    arg 2) Gpu card slot: 0 (0-1-2 if using 3 GPUs)") | 
					
						
						|  | print("    arg 3) Number of CPU threads to use: 8") | 
					
						
						|  | print("    arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)") | 
					
						
						|  | print("    arg 5) f0 Method: harvest (pm, harvest, dio, crepe)") | 
					
						
						|  | print("    arg 6) Crepe hop length: 128") | 
					
						
						|  | print("    arg 7) Version for pre-trained models: v2 (use either v1 or v2)\n") | 
					
						
						|  | print("Example: mi-test 0 24 1 harvest 128 v2") | 
					
						
						|  | elif cli_current_page == "TRAIN": | 
					
						
						|  | print("    arg 1) Model folder name in ./logs: mi-test") | 
					
						
						|  | print("    arg 2) Sample rate: 40k (32k, 40k, 48k)") | 
					
						
						|  | print("    arg 3) Has Pitch Guidance?: 1 (0 for no, 1 for yes)") | 
					
						
						|  | print("    arg 4) speaker id: 0") | 
					
						
						|  | print("    arg 5) Save epoch iteration: 50") | 
					
						
						|  | print("    arg 6) Total epochs: 10000") | 
					
						
						|  | print("    arg 7) Batch size: 8") | 
					
						
						|  | print("    arg 8) Gpu card slot: 0 (0-1-2 if using 3 GPUs)") | 
					
						
						|  | print("    arg 9) Save only the latest checkpoint: 0 (0 for no, 1 for yes)") | 
					
						
						|  | print("    arg 10) Whether to cache training set to vram: 0 (0 for no, 1 for yes)") | 
					
						
						|  | print("    arg 11) Save extracted small model every generation?: 0 (0 for no, 1 for yes)") | 
					
						
						|  | print("    arg 12) Model architecture version: v2 (use either v1 or v2)\n") | 
					
						
						|  | print("Example: mi-test 40k 1 0 50 10000 8 0 0 0 0 v2") | 
					
						
						|  | elif cli_current_page == "TRAIN-FEATURE": | 
					
						
						|  | print("    arg 1) Model folder name in ./logs: mi-test") | 
					
						
						|  | print("    arg 2) Model architecture version: v2 (use either v1 or v2)\n") | 
					
						
						|  | print("Example: mi-test v2") | 
					
						
						|  | elif cli_current_page == "EXTRACT-MODEL": | 
					
						
						|  | print("    arg 1) Model Path: logs/mi-test/G_168000.pth") | 
					
						
						|  | print("    arg 2) Model save name: MyModel") | 
					
						
						|  | print("    arg 3) Sample rate: 40k (32k, 40k, 48k)") | 
					
						
						|  | print("    arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)") | 
					
						
						|  | print('    arg 5) Model information: "My Model"') | 
					
						
						|  | print("    arg 6) Model architecture version: v2 (use either v1 or v2)\n") | 
					
						
						|  | print('Example: logs/mi-test/G_168000.pth MyModel 40k 1 "Created by Cole Mangio" v2') | 
					
						
						|  | print("") | 
					
						
						|  |  | 
					
						
						|  | def change_page(page): | 
					
						
						|  | global cli_current_page | 
					
						
						|  | cli_current_page = page | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | def execute_command(com): | 
					
						
						|  | if com == "go home": | 
					
						
						|  | return change_page("HOME") | 
					
						
						|  | elif com == "go infer": | 
					
						
						|  | return change_page("INFER") | 
					
						
						|  | elif com == "go pre-process": | 
					
						
						|  | return change_page("PRE-PROCESS") | 
					
						
						|  | elif com == "go extract-feature": | 
					
						
						|  | return change_page("EXTRACT-FEATURE") | 
					
						
						|  | elif com == "go train": | 
					
						
						|  | return change_page("TRAIN") | 
					
						
						|  | elif com == "go train-feature": | 
					
						
						|  | return change_page("TRAIN-FEATURE") | 
					
						
						|  | elif com == "go extract-model": | 
					
						
						|  | return change_page("EXTRACT-MODEL") | 
					
						
						|  | else: | 
					
						
						|  | if com[:3] == "go ": | 
					
						
						|  | print("page '%s' does not exist!" % com[3:]) | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | if cli_current_page == "INFER": | 
					
						
						|  | cli_infer(com) | 
					
						
						|  | elif cli_current_page == "PRE-PROCESS": | 
					
						
						|  | cli_pre_process(com) | 
					
						
						|  | elif cli_current_page == "EXTRACT-FEATURE": | 
					
						
						|  | cli_extract_feature(com) | 
					
						
						|  | elif cli_current_page == "TRAIN": | 
					
						
						|  | cli_train(com) | 
					
						
						|  | elif cli_current_page == "TRAIN-FEATURE": | 
					
						
						|  | cli_train_feature(com) | 
					
						
						|  | elif cli_current_page == "EXTRACT-MODEL": | 
					
						
						|  | cli_extract_model(com) | 
					
						
						|  |  | 
					
						
						|  | def cli_navigation_loop(): | 
					
						
						|  | while True: | 
					
						
						|  | print("You are currently in '%s':" % cli_current_page) | 
					
						
						|  | print_page_details() | 
					
						
						|  | command = input("%s: " % cli_current_page) | 
					
						
						|  | try: | 
					
						
						|  | execute_command(command) | 
					
						
						|  | except: | 
					
						
						|  | print(traceback.format_exc()) | 
					
						
						|  |  | 
					
						
						|  | if(config.is_cli): | 
					
						
						|  | print("\n\nMangio-RVC-Fork v2 CLI App!\n") | 
					
						
						|  | print("Welcome to the CLI version of RVC. Please read the documentation on https://github.com/Mangio621/Mangio-RVC-Fork (README.MD) to understand how to use this app.\n") | 
					
						
						|  | cli_navigation_loop() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_presets(): | 
					
						
						|  | data = None | 
					
						
						|  | with open('../inference-presets.json', 'r') as file: | 
					
						
						|  | data = json.load(file) | 
					
						
						|  | preset_names = [] | 
					
						
						|  | for preset in data['presets']: | 
					
						
						|  | preset_names.append(preset['name']) | 
					
						
						|  |  | 
					
						
						|  | return preset_names | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(theme=gr.themes.Soft()) as app: | 
					
						
						|  | gr.HTML("<h1> The Mangio-RVC-Fork 💻 </h1>") | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | value=i18n( | 
					
						
						|  | "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>." | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | with gr.Tabs(): | 
					
						
						|  | with gr.TabItem(i18n("模型推理")): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names)) | 
					
						
						|  | refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary") | 
					
						
						|  | clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary") | 
					
						
						|  | spk_item = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=2333, | 
					
						
						|  | step=1, | 
					
						
						|  | label=i18n("请选择说话人id"), | 
					
						
						|  | value=0, | 
					
						
						|  | visible=False, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | clean_button.click(fn=clean, inputs=[], outputs=[sid0]) | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ") | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | vc_transform0 = gr.Number( | 
					
						
						|  | label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 | 
					
						
						|  | ) | 
					
						
						|  | input_audio0 = gr.Textbox( | 
					
						
						|  | label=i18n("输入待处理音频文件路径(默认是正确格式示例)"), | 
					
						
						|  | value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav", | 
					
						
						|  | ) | 
					
						
						|  | f0method0 = gr.Radio( | 
					
						
						|  | label=i18n( | 
					
						
						|  | "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU" | 
					
						
						|  | ), | 
					
						
						|  | choices=["pm", "harvest", "dio", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny"], | 
					
						
						|  | value="pm", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | crepe_hop_length = gr.Slider( | 
					
						
						|  | minimum=1, | 
					
						
						|  | maximum=512, | 
					
						
						|  | step=1, | 
					
						
						|  | label=i18n("crepe_hop_length"), | 
					
						
						|  | value=160, | 
					
						
						|  | interactive=True | 
					
						
						|  | ) | 
					
						
						|  | filter_radius0 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=7, | 
					
						
						|  | label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), | 
					
						
						|  | value=3, | 
					
						
						|  | step=1, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | file_index1 = gr.Textbox( | 
					
						
						|  | label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), | 
					
						
						|  | value="", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | file_index2 = gr.Dropdown( | 
					
						
						|  | label=i18n("自动检测index路径,下拉式选择(dropdown)"), | 
					
						
						|  | choices=sorted(index_paths), | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | refresh_button.click( | 
					
						
						|  | fn=change_choices, inputs=[], outputs=[sid0, file_index2] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | index_rate1 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=1, | 
					
						
						|  | label=i18n("检索特征占比"), | 
					
						
						|  | value=0.88, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | resample_sr0 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=48000, | 
					
						
						|  | label=i18n("后处理重采样至最终采样率,0为不进行重采样"), | 
					
						
						|  | value=0, | 
					
						
						|  | step=1, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | rms_mix_rate0 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=1, | 
					
						
						|  | label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), | 
					
						
						|  | value=1, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | protect0 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=0.5, | 
					
						
						|  | label=i18n( | 
					
						
						|  | "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" | 
					
						
						|  | ), | 
					
						
						|  | value=0.33, | 
					
						
						|  | step=0.01, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调")) | 
					
						
						|  | but0 = gr.Button(i18n("转换"), variant="primary") | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | vc_output1 = gr.Textbox(label=i18n("输出信息")) | 
					
						
						|  | vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)")) | 
					
						
						|  | but0.click( | 
					
						
						|  | vc_single, | 
					
						
						|  | [ | 
					
						
						|  | spk_item, | 
					
						
						|  | input_audio0, | 
					
						
						|  | vc_transform0, | 
					
						
						|  | f0_file, | 
					
						
						|  | f0method0, | 
					
						
						|  | file_index1, | 
					
						
						|  | file_index2, | 
					
						
						|  |  | 
					
						
						|  | index_rate1, | 
					
						
						|  | filter_radius0, | 
					
						
						|  | resample_sr0, | 
					
						
						|  | rms_mix_rate0, | 
					
						
						|  | protect0, | 
					
						
						|  | crepe_hop_length | 
					
						
						|  | ], | 
					
						
						|  | [vc_output1, vc_output2], | 
					
						
						|  | ) | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ") | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | vc_transform1 = gr.Number( | 
					
						
						|  | label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 | 
					
						
						|  | ) | 
					
						
						|  | opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt") | 
					
						
						|  | f0method1 = gr.Radio( | 
					
						
						|  | label=i18n( | 
					
						
						|  | "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU" | 
					
						
						|  | ), | 
					
						
						|  | choices=["pm", "harvest", "crepe"], | 
					
						
						|  | value="pm", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | filter_radius1 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=7, | 
					
						
						|  | label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), | 
					
						
						|  | value=3, | 
					
						
						|  | step=1, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | file_index3 = gr.Textbox( | 
					
						
						|  | label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), | 
					
						
						|  | value="", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | file_index4 = gr.Dropdown( | 
					
						
						|  | label=i18n("自动检测index路径,下拉式选择(dropdown)"), | 
					
						
						|  | choices=sorted(index_paths), | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | refresh_button.click( | 
					
						
						|  | fn=lambda: change_choices()[1], | 
					
						
						|  | inputs=[], | 
					
						
						|  | outputs=file_index4, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | index_rate2 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=1, | 
					
						
						|  | label=i18n("检索特征占比"), | 
					
						
						|  | value=1, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | resample_sr1 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=48000, | 
					
						
						|  | label=i18n("后处理重采样至最终采样率,0为不进行重采样"), | 
					
						
						|  | value=0, | 
					
						
						|  | step=1, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | rms_mix_rate1 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=1, | 
					
						
						|  | label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), | 
					
						
						|  | value=1, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | protect1 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=0.5, | 
					
						
						|  | label=i18n( | 
					
						
						|  | "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" | 
					
						
						|  | ), | 
					
						
						|  | value=0.33, | 
					
						
						|  | step=0.01, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | dir_input = gr.Textbox( | 
					
						
						|  | label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"), | 
					
						
						|  | value="E:\codes\py39\\test-20230416b\\todo-songs", | 
					
						
						|  | ) | 
					
						
						|  | inputs = gr.File( | 
					
						
						|  | file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | format1 = gr.Radio( | 
					
						
						|  | label=i18n("导出文件格式"), | 
					
						
						|  | choices=["wav", "flac", "mp3", "m4a"], | 
					
						
						|  | value="flac", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | but1 = gr.Button(i18n("转换"), variant="primary") | 
					
						
						|  | vc_output3 = gr.Textbox(label=i18n("输出信息")) | 
					
						
						|  | but1.click( | 
					
						
						|  | vc_multi, | 
					
						
						|  | [ | 
					
						
						|  | spk_item, | 
					
						
						|  | dir_input, | 
					
						
						|  | opt_input, | 
					
						
						|  | inputs, | 
					
						
						|  | vc_transform1, | 
					
						
						|  | f0method1, | 
					
						
						|  | file_index3, | 
					
						
						|  | file_index4, | 
					
						
						|  |  | 
					
						
						|  | index_rate2, | 
					
						
						|  | filter_radius1, | 
					
						
						|  | resample_sr1, | 
					
						
						|  | rms_mix_rate1, | 
					
						
						|  | protect1, | 
					
						
						|  | format1, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | ], | 
					
						
						|  | [vc_output3], | 
					
						
						|  | ) | 
					
						
						|  | sid0.change( | 
					
						
						|  | fn=get_vc, | 
					
						
						|  | inputs=[sid0, protect0, protect1], | 
					
						
						|  | outputs=[spk_item, protect0, protect1], | 
					
						
						|  | ) | 
					
						
						|  | with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | value=i18n( | 
					
						
						|  | "人声伴奏分离批量处理, 使用UVR5模型。 <br>" | 
					
						
						|  | "合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>" | 
					
						
						|  | "模型分为三类: <br>" | 
					
						
						|  | "1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>" | 
					
						
						|  | "2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> " | 
					
						
						|  | "3、去混响、去延迟模型(by FoxJoy):<br>" | 
					
						
						|  | "  (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>" | 
					
						
						|  | " (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>" | 
					
						
						|  | "去混响/去延迟,附:<br>" | 
					
						
						|  | "1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>" | 
					
						
						|  | "2、MDX-Net-Dereverb模型挺慢的;<br>" | 
					
						
						|  | "3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。" | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | dir_wav_input = gr.Textbox( | 
					
						
						|  | label=i18n("输入待处理音频文件夹路径"), | 
					
						
						|  | value="E:\\codes\\py39\\test-20230416b\\todo-songs\\todo-songs", | 
					
						
						|  | ) | 
					
						
						|  | wav_inputs = gr.File( | 
					
						
						|  | file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") | 
					
						
						|  | ) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) | 
					
						
						|  | agg = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=20, | 
					
						
						|  | step=1, | 
					
						
						|  | label="人声提取激进程度", | 
					
						
						|  | value=10, | 
					
						
						|  | interactive=True, | 
					
						
						|  | visible=False, | 
					
						
						|  | ) | 
					
						
						|  | opt_vocal_root = gr.Textbox( | 
					
						
						|  | label=i18n("指定输出主人声文件夹"), value="opt" | 
					
						
						|  | ) | 
					
						
						|  | opt_ins_root = gr.Textbox( | 
					
						
						|  | label=i18n("指定输出非主人声文件夹"), value="opt" | 
					
						
						|  | ) | 
					
						
						|  | format0 = gr.Radio( | 
					
						
						|  | label=i18n("导出文件格式"), | 
					
						
						|  | choices=["wav", "flac", "mp3", "m4a"], | 
					
						
						|  | value="flac", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | but2 = gr.Button(i18n("转换"), variant="primary") | 
					
						
						|  | vc_output4 = gr.Textbox(label=i18n("输出信息")) | 
					
						
						|  | but2.click( | 
					
						
						|  | uvr, | 
					
						
						|  | [ | 
					
						
						|  | model_choose, | 
					
						
						|  | dir_wav_input, | 
					
						
						|  | opt_vocal_root, | 
					
						
						|  | wav_inputs, | 
					
						
						|  | opt_ins_root, | 
					
						
						|  | agg, | 
					
						
						|  | format0, | 
					
						
						|  | ], | 
					
						
						|  | [vc_output4], | 
					
						
						|  | ) | 
					
						
						|  | with gr.TabItem(i18n("训练")): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | value=i18n( | 
					
						
						|  | "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. " | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test") | 
					
						
						|  | sr2 = gr.Radio( | 
					
						
						|  | label=i18n("目标采样率"), | 
					
						
						|  | choices=["40k", "48k"], | 
					
						
						|  | value="40k", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | if_f0_3 = gr.Radio( | 
					
						
						|  | label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"), | 
					
						
						|  | choices=[True, False], | 
					
						
						|  | value=True, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | version19 = gr.Radio( | 
					
						
						|  | label=i18n("版本"), | 
					
						
						|  | choices=["v1", "v2"], | 
					
						
						|  | value="v1", | 
					
						
						|  | interactive=True, | 
					
						
						|  | visible=True, | 
					
						
						|  | ) | 
					
						
						|  | np7 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=config.n_cpu, | 
					
						
						|  | step=1, | 
					
						
						|  | label=i18n("提取音高和处理数据使用的CPU进程数"), | 
					
						
						|  | value=int(np.ceil(config.n_cpu / 1.5)), | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | value=i18n( | 
					
						
						|  | "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. " | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | trainset_dir4 = gr.Textbox( | 
					
						
						|  | label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src" | 
					
						
						|  | ) | 
					
						
						|  | spk_id5 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=4, | 
					
						
						|  | step=1, | 
					
						
						|  | label=i18n("请指定说话人id"), | 
					
						
						|  | value=0, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | but1 = gr.Button(i18n("处理数据"), variant="primary") | 
					
						
						|  | info1 = gr.Textbox(label=i18n("输出信息"), value="") | 
					
						
						|  | but1.click( | 
					
						
						|  | preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1] | 
					
						
						|  | ) | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)")) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | gpus6 = gr.Textbox( | 
					
						
						|  | label=i18n("以-分隔输入使用的卡号, 例如   0-1-2   使用卡0和卡1和卡2"), | 
					
						
						|  | value=gpus, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | f0method8 = gr.Radio( | 
					
						
						|  | label=i18n( | 
					
						
						|  | "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢" | 
					
						
						|  | ), | 
					
						
						|  | choices=["pm", "harvest", "dio", "crepe", "mangio-crepe"], | 
					
						
						|  | value="harvest", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | extraction_crepe_hop_length = gr.Slider( | 
					
						
						|  | minimum=1, | 
					
						
						|  | maximum=512, | 
					
						
						|  | step=1, | 
					
						
						|  | label=i18n("crepe_hop_length"), | 
					
						
						|  | value=64, | 
					
						
						|  | interactive=True | 
					
						
						|  | ) | 
					
						
						|  | but2 = gr.Button(i18n("特征提取"), variant="primary") | 
					
						
						|  | info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | 
					
						
						|  | but2.click( | 
					
						
						|  | extract_f0_feature, | 
					
						
						|  | [gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length], | 
					
						
						|  | [info2], | 
					
						
						|  | ) | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引")) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | save_epoch10 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=50, | 
					
						
						|  | step=1, | 
					
						
						|  | label=i18n("保存频率save_every_epoch"), | 
					
						
						|  | value=5, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | total_epoch11 = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=10000, | 
					
						
						|  | step=1, | 
					
						
						|  | label=i18n("总训练轮数total_epoch"), | 
					
						
						|  | value=20, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | batch_size12 = gr.Slider( | 
					
						
						|  | minimum=1, | 
					
						
						|  | maximum=40, | 
					
						
						|  | step=1, | 
					
						
						|  | label=i18n("每张显卡的batch_size"), | 
					
						
						|  | value=default_batch_size, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | if_save_latest13 = gr.Radio( | 
					
						
						|  | label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), | 
					
						
						|  | choices=[i18n("是"), i18n("否")], | 
					
						
						|  | value=i18n("否"), | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | if_cache_gpu17 = gr.Radio( | 
					
						
						|  | label=i18n( | 
					
						
						|  | "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速" | 
					
						
						|  | ), | 
					
						
						|  | choices=[i18n("是"), i18n("否")], | 
					
						
						|  | value=i18n("否"), | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | if_save_every_weights18 = gr.Radio( | 
					
						
						|  | label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), | 
					
						
						|  | choices=[i18n("是"), i18n("否")], | 
					
						
						|  | value=i18n("否"), | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | pretrained_G14 = gr.Textbox( | 
					
						
						|  | label=i18n("加载预训练底模G路径"), | 
					
						
						|  | value="pretrained/f0G40k.pth", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | pretrained_D15 = gr.Textbox( | 
					
						
						|  | label=i18n("加载预训练底模D路径"), | 
					
						
						|  | value="pretrained/f0D40k.pth", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | sr2.change( | 
					
						
						|  | change_sr2, | 
					
						
						|  | [sr2, if_f0_3, version19], | 
					
						
						|  | [pretrained_G14, pretrained_D15], | 
					
						
						|  | ) | 
					
						
						|  | version19.change( | 
					
						
						|  | change_version19, | 
					
						
						|  | [sr2, if_f0_3, version19], | 
					
						
						|  | [pretrained_G14, pretrained_D15, sr2], | 
					
						
						|  | ) | 
					
						
						|  | if_f0_3.change( | 
					
						
						|  | change_f0, | 
					
						
						|  | [if_f0_3, sr2, version19], | 
					
						
						|  | [f0method8, pretrained_G14, pretrained_D15], | 
					
						
						|  | ) | 
					
						
						|  | gpus16 = gr.Textbox( | 
					
						
						|  | label=i18n("以-分隔输入使用的卡号, 例如   0-1-2   使用卡0和卡1和卡2"), | 
					
						
						|  | value=gpus, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | but3 = gr.Button(i18n("训练模型"), variant="primary") | 
					
						
						|  | but4 = gr.Button(i18n("训练特征索引"), variant="primary") | 
					
						
						|  | but5 = gr.Button(i18n("一键训练"), variant="primary") | 
					
						
						|  | info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10) | 
					
						
						|  | but3.click( | 
					
						
						|  | click_train, | 
					
						
						|  | [ | 
					
						
						|  | exp_dir1, | 
					
						
						|  | sr2, | 
					
						
						|  | if_f0_3, | 
					
						
						|  | spk_id5, | 
					
						
						|  | save_epoch10, | 
					
						
						|  | total_epoch11, | 
					
						
						|  | batch_size12, | 
					
						
						|  | if_save_latest13, | 
					
						
						|  | pretrained_G14, | 
					
						
						|  | pretrained_D15, | 
					
						
						|  | gpus16, | 
					
						
						|  | if_cache_gpu17, | 
					
						
						|  | if_save_every_weights18, | 
					
						
						|  | version19, | 
					
						
						|  | ], | 
					
						
						|  | info3, | 
					
						
						|  | ) | 
					
						
						|  | but4.click(train_index, [exp_dir1, version19], info3) | 
					
						
						|  | but5.click( | 
					
						
						|  | train1key, | 
					
						
						|  | [ | 
					
						
						|  | exp_dir1, | 
					
						
						|  | sr2, | 
					
						
						|  | if_f0_3, | 
					
						
						|  | trainset_dir4, | 
					
						
						|  | spk_id5, | 
					
						
						|  | np7, | 
					
						
						|  | f0method8, | 
					
						
						|  | save_epoch10, | 
					
						
						|  | total_epoch11, | 
					
						
						|  | batch_size12, | 
					
						
						|  | if_save_latest13, | 
					
						
						|  | pretrained_G14, | 
					
						
						|  | pretrained_D15, | 
					
						
						|  | gpus16, | 
					
						
						|  | if_cache_gpu17, | 
					
						
						|  | if_save_every_weights18, | 
					
						
						|  | version19, | 
					
						
						|  | extraction_crepe_hop_length | 
					
						
						|  | ], | 
					
						
						|  | info3, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem(i18n("ckpt处理")): | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown(value=i18n("模型融合, 可用于测试音色融合")) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True) | 
					
						
						|  | ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True) | 
					
						
						|  | alpha_a = gr.Slider( | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=1, | 
					
						
						|  | label=i18n("A模型权重"), | 
					
						
						|  | value=0.5, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | sr_ = gr.Radio( | 
					
						
						|  | label=i18n("目标采样率"), | 
					
						
						|  | choices=["40k", "48k"], | 
					
						
						|  | value="40k", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | if_f0_ = gr.Radio( | 
					
						
						|  | label=i18n("模型是否带音高指导"), | 
					
						
						|  | choices=[i18n("是"), i18n("否")], | 
					
						
						|  | value=i18n("是"), | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | info__ = gr.Textbox( | 
					
						
						|  | label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True | 
					
						
						|  | ) | 
					
						
						|  | name_to_save0 = gr.Textbox( | 
					
						
						|  | label=i18n("保存的模型名不带后缀"), | 
					
						
						|  | value="", | 
					
						
						|  | max_lines=1, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | version_2 = gr.Radio( | 
					
						
						|  | label=i18n("模型版本型号"), | 
					
						
						|  | choices=["v1", "v2"], | 
					
						
						|  | value="v1", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | but6 = gr.Button(i18n("融合"), variant="primary") | 
					
						
						|  | info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | 
					
						
						|  | but6.click( | 
					
						
						|  | merge, | 
					
						
						|  | [ | 
					
						
						|  | ckpt_a, | 
					
						
						|  | ckpt_b, | 
					
						
						|  | alpha_a, | 
					
						
						|  | sr_, | 
					
						
						|  | if_f0_, | 
					
						
						|  | info__, | 
					
						
						|  | name_to_save0, | 
					
						
						|  | version_2, | 
					
						
						|  | ], | 
					
						
						|  | info4, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | ckpt_path0 = gr.Textbox( | 
					
						
						|  | label=i18n("模型路径"), value="", interactive=True | 
					
						
						|  | ) | 
					
						
						|  | info_ = gr.Textbox( | 
					
						
						|  | label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True | 
					
						
						|  | ) | 
					
						
						|  | name_to_save1 = gr.Textbox( | 
					
						
						|  | label=i18n("保存的文件名, 默认空为和源文件同名"), | 
					
						
						|  | value="", | 
					
						
						|  | max_lines=8, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | but7 = gr.Button(i18n("修改"), variant="primary") | 
					
						
						|  | info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | 
					
						
						|  | but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5) | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | ckpt_path1 = gr.Textbox( | 
					
						
						|  | label=i18n("模型路径"), value="", interactive=True | 
					
						
						|  | ) | 
					
						
						|  | but8 = gr.Button(i18n("查看"), variant="primary") | 
					
						
						|  | info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | 
					
						
						|  | but8.click(show_info, [ckpt_path1], info6) | 
					
						
						|  | with gr.Group(): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | value=i18n( | 
					
						
						|  | "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况" | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | ckpt_path2 = gr.Textbox( | 
					
						
						|  | label=i18n("模型路径"), | 
					
						
						|  | value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | save_name = gr.Textbox( | 
					
						
						|  | label=i18n("保存名"), value="", interactive=True | 
					
						
						|  | ) | 
					
						
						|  | sr__ = gr.Radio( | 
					
						
						|  | label=i18n("目标采样率"), | 
					
						
						|  | choices=["32k", "40k", "48k"], | 
					
						
						|  | value="40k", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | if_f0__ = gr.Radio( | 
					
						
						|  | label=i18n("模型是否带音高指导,1是0否"), | 
					
						
						|  | choices=["1", "0"], | 
					
						
						|  | value="1", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | version_1 = gr.Radio( | 
					
						
						|  | label=i18n("模型版本型号"), | 
					
						
						|  | choices=["v1", "v2"], | 
					
						
						|  | value="v2", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | info___ = gr.Textbox( | 
					
						
						|  | label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True | 
					
						
						|  | ) | 
					
						
						|  | but9 = gr.Button(i18n("提取"), variant="primary") | 
					
						
						|  | info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | 
					
						
						|  | ckpt_path2.change( | 
					
						
						|  | change_info_, [ckpt_path2], [sr__, if_f0__, version_1] | 
					
						
						|  | ) | 
					
						
						|  | but9.click( | 
					
						
						|  | extract_small_model, | 
					
						
						|  | [ckpt_path2, save_name, sr__, if_f0__, info___, version_1], | 
					
						
						|  | info7, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem(i18n("Onnx导出")): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | onnx_dir = gr.Textbox( | 
					
						
						|  | label=i18n("Onnx输出路径"), value="", interactive=True | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | infoOnnx = gr.Label(label="info") | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary") | 
					
						
						|  | butOnnx.click(export_onnx, [ckpt_dir, onnx_dir], infoOnnx) | 
					
						
						|  |  | 
					
						
						|  | tab_faq = i18n("常见问题解答") | 
					
						
						|  | with gr.TabItem(tab_faq): | 
					
						
						|  | try: | 
					
						
						|  | if tab_faq == "常见问题解答": | 
					
						
						|  | with open("docs/faq.md", "r", encoding="utf8") as f: | 
					
						
						|  | info = f.read() | 
					
						
						|  | else: | 
					
						
						|  | with open("docs/faq_en.md", "r", encoding="utf8") as f: | 
					
						
						|  | info = f.read() | 
					
						
						|  | gr.Markdown(value=info) | 
					
						
						|  | except: | 
					
						
						|  | gr.Markdown(traceback.format_exc()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def save_preset( | 
					
						
						|  | preset_name, | 
					
						
						|  | sid0, | 
					
						
						|  | vc_transform, | 
					
						
						|  | input_audio, | 
					
						
						|  | f0method, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | filter_radius, | 
					
						
						|  | file_index1, | 
					
						
						|  | file_index2, | 
					
						
						|  | index_rate, | 
					
						
						|  | resample_sr, | 
					
						
						|  | rms_mix_rate, | 
					
						
						|  | protect, | 
					
						
						|  | f0_file | 
					
						
						|  | ): | 
					
						
						|  | data = None | 
					
						
						|  | with open('../inference-presets.json', 'r') as file: | 
					
						
						|  | data = json.load(file) | 
					
						
						|  | preset_json = { | 
					
						
						|  | 'name': preset_name, | 
					
						
						|  | 'model': sid0, | 
					
						
						|  | 'transpose': vc_transform, | 
					
						
						|  | 'audio_file': input_audio, | 
					
						
						|  | 'f0_method': f0method, | 
					
						
						|  | 'crepe_hop_length': crepe_hop_length, | 
					
						
						|  | 'median_filtering': filter_radius, | 
					
						
						|  | 'feature_path': file_index1, | 
					
						
						|  | 'auto_feature_path': file_index2, | 
					
						
						|  | 'search_feature_ratio': index_rate, | 
					
						
						|  | 'resample': resample_sr, | 
					
						
						|  | 'volume_envelope': rms_mix_rate, | 
					
						
						|  | 'protect_voiceless': protect, | 
					
						
						|  | 'f0_file_path': f0_file | 
					
						
						|  | } | 
					
						
						|  | data['presets'].append(preset_json) | 
					
						
						|  | with open('../inference-presets.json', 'w') as file: | 
					
						
						|  | json.dump(data, file) | 
					
						
						|  | file.flush() | 
					
						
						|  | print("Saved Preset %s into inference-presets.json!" % preset_name) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def on_preset_changed(preset_name): | 
					
						
						|  | print("Changed Preset to %s!" % preset_name) | 
					
						
						|  | data = None | 
					
						
						|  | with open('../inference-presets.json', 'r') as file: | 
					
						
						|  | data = json.load(file) | 
					
						
						|  |  | 
					
						
						|  | print("Searching for " + preset_name) | 
					
						
						|  | returning_preset = None | 
					
						
						|  | for preset in data['presets']: | 
					
						
						|  | if(preset['name'] == preset_name): | 
					
						
						|  | print("Found a preset") | 
					
						
						|  | returning_preset = preset | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if config.iscolab or config.paperspace: | 
					
						
						|  | app.queue(concurrency_count=511, max_size=1022).launch(share=True) | 
					
						
						|  | else: | 
					
						
						|  | app.queue(concurrency_count=511, max_size=1022).launch( | 
					
						
						|  | server_name="0.0.0.0", | 
					
						
						|  | inbrowser=not config.noautoopen, | 
					
						
						|  | server_port=config.listen_port, | 
					
						
						|  | quiet=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |