| 
							 | 
						import os, sys, torch, warnings, pdb | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						now_dir = os.getcwd() | 
					
					
						
						| 
							 | 
						sys.path.append(now_dir) | 
					
					
						
						| 
							 | 
						from json import load as ll | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						warnings.filterwarnings("ignore") | 
					
					
						
						| 
							 | 
						import librosa | 
					
					
						
						| 
							 | 
						import importlib | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import hashlib, math | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						from uvr5_pack.lib_v5 import spec_utils | 
					
					
						
						| 
							 | 
						from uvr5_pack.utils import _get_name_params, inference | 
					
					
						
						| 
							 | 
						from uvr5_pack.lib_v5.model_param_init import ModelParameters | 
					
					
						
						| 
							 | 
						import soundfile as sf | 
					
					
						
						| 
							 | 
						from uvr5_pack.lib_v5.nets_new import CascadedNet | 
					
					
						
						| 
							 | 
						from uvr5_pack.lib_v5 import nets_61968KB as nets | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class _audio_pre_: | 
					
					
						
						| 
							 | 
						    def __init__(self, agg, model_path, device, is_half): | 
					
					
						
						| 
							 | 
						        self.model_path = model_path | 
					
					
						
						| 
							 | 
						        self.device = device | 
					
					
						
						| 
							 | 
						        self.data = { | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            "postprocess": False, | 
					
					
						
						| 
							 | 
						            "tta": False, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            "window_size": 512, | 
					
					
						
						| 
							 | 
						            "agg": agg, | 
					
					
						
						| 
							 | 
						            "high_end_process": "mirroring", | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v2.json") | 
					
					
						
						| 
							 | 
						        model = nets.CascadedASPPNet(mp.param["bins"] * 2) | 
					
					
						
						| 
							 | 
						        cpk = torch.load(model_path, map_location="cpu") | 
					
					
						
						| 
							 | 
						        model.load_state_dict(cpk) | 
					
					
						
						| 
							 | 
						        model.eval() | 
					
					
						
						| 
							 | 
						        if is_half: | 
					
					
						
						| 
							 | 
						            model = model.half().to(device) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            model = model.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.mp = mp | 
					
					
						
						| 
							 | 
						        self.model = model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _path_audio_(self, music_file, ins_root=None, vocal_root=None, format="flac"): | 
					
					
						
						| 
							 | 
						        if ins_root is None and vocal_root is None: | 
					
					
						
						| 
							 | 
						            return "No save root." | 
					
					
						
						| 
							 | 
						        name = os.path.basename(music_file) | 
					
					
						
						| 
							 | 
						        if ins_root is not None: | 
					
					
						
						| 
							 | 
						            os.makedirs(ins_root, exist_ok=True) | 
					
					
						
						| 
							 | 
						        if vocal_root is not None: | 
					
					
						
						| 
							 | 
						            os.makedirs(vocal_root, exist_ok=True) | 
					
					
						
						| 
							 | 
						        X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} | 
					
					
						
						| 
							 | 
						        bands_n = len(self.mp.param["band"]) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for d in range(bands_n, 0, -1): | 
					
					
						
						| 
							 | 
						            bp = self.mp.param["band"][d] | 
					
					
						
						| 
							 | 
						            if d == bands_n:   | 
					
					
						
						| 
							 | 
						                ( | 
					
					
						
						| 
							 | 
						                    X_wave[d], | 
					
					
						
						| 
							 | 
						                    _, | 
					
					
						
						| 
							 | 
						                ) = librosa.core.load(   | 
					
					
						
						| 
							 | 
						                    music_file, | 
					
					
						
						| 
							 | 
						                    bp["sr"], | 
					
					
						
						| 
							 | 
						                    False, | 
					
					
						
						| 
							 | 
						                    dtype=np.float32, | 
					
					
						
						| 
							 | 
						                    res_type=bp["res_type"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                if X_wave[d].ndim == 1: | 
					
					
						
						| 
							 | 
						                    X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) | 
					
					
						
						| 
							 | 
						            else:   | 
					
					
						
						| 
							 | 
						                X_wave[d] = librosa.core.resample( | 
					
					
						
						| 
							 | 
						                    X_wave[d + 1], | 
					
					
						
						| 
							 | 
						                    self.mp.param["band"][d + 1]["sr"], | 
					
					
						
						| 
							 | 
						                    bp["sr"], | 
					
					
						
						| 
							 | 
						                    res_type=bp["res_type"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt( | 
					
					
						
						| 
							 | 
						                X_wave[d], | 
					
					
						
						| 
							 | 
						                bp["hl"], | 
					
					
						
						| 
							 | 
						                bp["n_fft"], | 
					
					
						
						| 
							 | 
						                self.mp.param["mid_side"], | 
					
					
						
						| 
							 | 
						                self.mp.param["mid_side_b2"], | 
					
					
						
						| 
							 | 
						                self.mp.param["reverse"], | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if d == bands_n and self.data["high_end_process"] != "none": | 
					
					
						
						| 
							 | 
						                input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + ( | 
					
					
						
						| 
							 | 
						                    self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"] | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                input_high_end = X_spec_s[d][ | 
					
					
						
						| 
							 | 
						                    :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, : | 
					
					
						
						| 
							 | 
						                ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) | 
					
					
						
						| 
							 | 
						        aggresive_set = float(self.data["agg"] / 100) | 
					
					
						
						| 
							 | 
						        aggressiveness = { | 
					
					
						
						| 
							 | 
						            "value": aggresive_set, | 
					
					
						
						| 
							 | 
						            "split_bin": self.mp.param["band"][1]["crop_stop"], | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        with torch.no_grad(): | 
					
					
						
						| 
							 | 
						            pred, X_mag, X_phase = inference( | 
					
					
						
						| 
							 | 
						                X_spec_m, self.device, self.model, aggressiveness, self.data | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.data["postprocess"]: | 
					
					
						
						| 
							 | 
						            pred_inv = np.clip(X_mag - pred, 0, np.inf) | 
					
					
						
						| 
							 | 
						            pred = spec_utils.mask_silence(pred, pred_inv) | 
					
					
						
						| 
							 | 
						        y_spec_m = pred * X_phase | 
					
					
						
						| 
							 | 
						        v_spec_m = X_spec_m - y_spec_m | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ins_root is not None: | 
					
					
						
						| 
							 | 
						            if self.data["high_end_process"].startswith("mirroring"): | 
					
					
						
						| 
							 | 
						                input_high_end_ = spec_utils.mirroring( | 
					
					
						
						| 
							 | 
						                    self.data["high_end_process"], y_spec_m, input_high_end, self.mp | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                wav_instrument = spec_utils.cmb_spectrogram_to_wave( | 
					
					
						
						| 
							 | 
						                    y_spec_m, self.mp, input_high_end_h, input_high_end_ | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) | 
					
					
						
						| 
							 | 
						            print("%s instruments done" % name) | 
					
					
						
						| 
							 | 
						            if format in ["wav", "flac"]: | 
					
					
						
						| 
							 | 
						                sf.write( | 
					
					
						
						| 
							 | 
						                    os.path.join( | 
					
					
						
						| 
							 | 
						                        ins_root, | 
					
					
						
						| 
							 | 
						                        "instrument_{}_{}.{}".format(name, self.data["agg"], format), | 
					
					
						
						| 
							 | 
						                    ), | 
					
					
						
						| 
							 | 
						                    (np.array(wav_instrument) * 32768).astype("int16"), | 
					
					
						
						| 
							 | 
						                    self.mp.param["sr"], | 
					
					
						
						| 
							 | 
						                )   | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                path = os.path.join( | 
					
					
						
						| 
							 | 
						                    ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"]) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                sf.write( | 
					
					
						
						| 
							 | 
						                    path, | 
					
					
						
						| 
							 | 
						                    (np.array(wav_instrument) * 32768).astype("int16"), | 
					
					
						
						| 
							 | 
						                    self.mp.param["sr"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                if os.path.exists(path): | 
					
					
						
						| 
							 | 
						                    os.system( | 
					
					
						
						| 
							 | 
						                        "ffmpeg -i %s -vn %s -q:a 2 -y" | 
					
					
						
						| 
							 | 
						                        % (path, path[:-4] + ".%s" % format) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						        if vocal_root is not None: | 
					
					
						
						| 
							 | 
						            if self.data["high_end_process"].startswith("mirroring"): | 
					
					
						
						| 
							 | 
						                input_high_end_ = spec_utils.mirroring( | 
					
					
						
						| 
							 | 
						                    self.data["high_end_process"], v_spec_m, input_high_end, self.mp | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                wav_vocals = spec_utils.cmb_spectrogram_to_wave( | 
					
					
						
						| 
							 | 
						                    v_spec_m, self.mp, input_high_end_h, input_high_end_ | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) | 
					
					
						
						| 
							 | 
						            print("%s vocals done" % name) | 
					
					
						
						| 
							 | 
						            if format in ["wav", "flac"]: | 
					
					
						
						| 
							 | 
						                sf.write( | 
					
					
						
						| 
							 | 
						                    os.path.join( | 
					
					
						
						| 
							 | 
						                        vocal_root, | 
					
					
						
						| 
							 | 
						                        "vocal_{}_{}.{}".format(name, self.data["agg"], format), | 
					
					
						
						| 
							 | 
						                    ), | 
					
					
						
						| 
							 | 
						                    (np.array(wav_vocals) * 32768).astype("int16"), | 
					
					
						
						| 
							 | 
						                    self.mp.param["sr"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                path = os.path.join( | 
					
					
						
						| 
							 | 
						                    vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"]) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                sf.write( | 
					
					
						
						| 
							 | 
						                    path, | 
					
					
						
						| 
							 | 
						                    (np.array(wav_vocals) * 32768).astype("int16"), | 
					
					
						
						| 
							 | 
						                    self.mp.param["sr"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                if os.path.exists(path): | 
					
					
						
						| 
							 | 
						                    os.system( | 
					
					
						
						| 
							 | 
						                        "ffmpeg -i %s -vn %s -q:a 2 -y" | 
					
					
						
						| 
							 | 
						                        % (path, path[:-4] + ".%s" % format) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class _audio_pre_new: | 
					
					
						
						| 
							 | 
						    def __init__(self, agg, model_path, device, is_half): | 
					
					
						
						| 
							 | 
						        self.model_path = model_path | 
					
					
						
						| 
							 | 
						        self.device = device | 
					
					
						
						| 
							 | 
						        self.data = { | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            "postprocess": False, | 
					
					
						
						| 
							 | 
						            "tta": False, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            "window_size": 512, | 
					
					
						
						| 
							 | 
						            "agg": agg, | 
					
					
						
						| 
							 | 
						            "high_end_process": "mirroring", | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v3.json") | 
					
					
						
						| 
							 | 
						        nout = 64 if "DeReverb" in model_path else 48 | 
					
					
						
						| 
							 | 
						        model = CascadedNet(mp.param["bins"] * 2, nout) | 
					
					
						
						| 
							 | 
						        cpk = torch.load(model_path, map_location="cpu") | 
					
					
						
						| 
							 | 
						        model.load_state_dict(cpk) | 
					
					
						
						| 
							 | 
						        model.eval() | 
					
					
						
						| 
							 | 
						        if is_half: | 
					
					
						
						| 
							 | 
						            model = model.half().to(device) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            model = model.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.mp = mp | 
					
					
						
						| 
							 | 
						        self.model = model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _path_audio_( | 
					
					
						
						| 
							 | 
						        self, music_file, vocal_root=None, ins_root=None, format="flac" | 
					
					
						
						| 
							 | 
						    ):   | 
					
					
						
						| 
							 | 
						        if ins_root is None and vocal_root is None: | 
					
					
						
						| 
							 | 
						            return "No save root." | 
					
					
						
						| 
							 | 
						        name = os.path.basename(music_file) | 
					
					
						
						| 
							 | 
						        if ins_root is not None: | 
					
					
						
						| 
							 | 
						            os.makedirs(ins_root, exist_ok=True) | 
					
					
						
						| 
							 | 
						        if vocal_root is not None: | 
					
					
						
						| 
							 | 
						            os.makedirs(vocal_root, exist_ok=True) | 
					
					
						
						| 
							 | 
						        X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} | 
					
					
						
						| 
							 | 
						        bands_n = len(self.mp.param["band"]) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for d in range(bands_n, 0, -1): | 
					
					
						
						| 
							 | 
						            bp = self.mp.param["band"][d] | 
					
					
						
						| 
							 | 
						            if d == bands_n:   | 
					
					
						
						| 
							 | 
						                ( | 
					
					
						
						| 
							 | 
						                    X_wave[d], | 
					
					
						
						| 
							 | 
						                    _, | 
					
					
						
						| 
							 | 
						                ) = librosa.core.load(   | 
					
					
						
						| 
							 | 
						                    music_file, | 
					
					
						
						| 
							 | 
						                    bp["sr"], | 
					
					
						
						| 
							 | 
						                    False, | 
					
					
						
						| 
							 | 
						                    dtype=np.float32, | 
					
					
						
						| 
							 | 
						                    res_type=bp["res_type"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                if X_wave[d].ndim == 1: | 
					
					
						
						| 
							 | 
						                    X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) | 
					
					
						
						| 
							 | 
						            else:   | 
					
					
						
						| 
							 | 
						                X_wave[d] = librosa.core.resample( | 
					
					
						
						| 
							 | 
						                    X_wave[d + 1], | 
					
					
						
						| 
							 | 
						                    self.mp.param["band"][d + 1]["sr"], | 
					
					
						
						| 
							 | 
						                    bp["sr"], | 
					
					
						
						| 
							 | 
						                    res_type=bp["res_type"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt( | 
					
					
						
						| 
							 | 
						                X_wave[d], | 
					
					
						
						| 
							 | 
						                bp["hl"], | 
					
					
						
						| 
							 | 
						                bp["n_fft"], | 
					
					
						
						| 
							 | 
						                self.mp.param["mid_side"], | 
					
					
						
						| 
							 | 
						                self.mp.param["mid_side_b2"], | 
					
					
						
						| 
							 | 
						                self.mp.param["reverse"], | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if d == bands_n and self.data["high_end_process"] != "none": | 
					
					
						
						| 
							 | 
						                input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + ( | 
					
					
						
						| 
							 | 
						                    self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"] | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                input_high_end = X_spec_s[d][ | 
					
					
						
						| 
							 | 
						                    :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, : | 
					
					
						
						| 
							 | 
						                ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) | 
					
					
						
						| 
							 | 
						        aggresive_set = float(self.data["agg"] / 100) | 
					
					
						
						| 
							 | 
						        aggressiveness = { | 
					
					
						
						| 
							 | 
						            "value": aggresive_set, | 
					
					
						
						| 
							 | 
						            "split_bin": self.mp.param["band"][1]["crop_stop"], | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        with torch.no_grad(): | 
					
					
						
						| 
							 | 
						            pred, X_mag, X_phase = inference( | 
					
					
						
						| 
							 | 
						                X_spec_m, self.device, self.model, aggressiveness, self.data | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.data["postprocess"]: | 
					
					
						
						| 
							 | 
						            pred_inv = np.clip(X_mag - pred, 0, np.inf) | 
					
					
						
						| 
							 | 
						            pred = spec_utils.mask_silence(pred, pred_inv) | 
					
					
						
						| 
							 | 
						        y_spec_m = pred * X_phase | 
					
					
						
						| 
							 | 
						        v_spec_m = X_spec_m - y_spec_m | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ins_root is not None: | 
					
					
						
						| 
							 | 
						            if self.data["high_end_process"].startswith("mirroring"): | 
					
					
						
						| 
							 | 
						                input_high_end_ = spec_utils.mirroring( | 
					
					
						
						| 
							 | 
						                    self.data["high_end_process"], y_spec_m, input_high_end, self.mp | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                wav_instrument = spec_utils.cmb_spectrogram_to_wave( | 
					
					
						
						| 
							 | 
						                    y_spec_m, self.mp, input_high_end_h, input_high_end_ | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) | 
					
					
						
						| 
							 | 
						            print("%s instruments done" % name) | 
					
					
						
						| 
							 | 
						            if format in ["wav", "flac"]: | 
					
					
						
						| 
							 | 
						                sf.write( | 
					
					
						
						| 
							 | 
						                    os.path.join( | 
					
					
						
						| 
							 | 
						                        ins_root, | 
					
					
						
						| 
							 | 
						                        "instrument_{}_{}.{}".format(name, self.data["agg"], format), | 
					
					
						
						| 
							 | 
						                    ), | 
					
					
						
						| 
							 | 
						                    (np.array(wav_instrument) * 32768).astype("int16"), | 
					
					
						
						| 
							 | 
						                    self.mp.param["sr"], | 
					
					
						
						| 
							 | 
						                )   | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                path = os.path.join( | 
					
					
						
						| 
							 | 
						                    ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"]) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                sf.write( | 
					
					
						
						| 
							 | 
						                    path, | 
					
					
						
						| 
							 | 
						                    (np.array(wav_instrument) * 32768).astype("int16"), | 
					
					
						
						| 
							 | 
						                    self.mp.param["sr"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                if os.path.exists(path): | 
					
					
						
						| 
							 | 
						                    os.system( | 
					
					
						
						| 
							 | 
						                        "ffmpeg -i %s -vn %s -q:a 2 -y" | 
					
					
						
						| 
							 | 
						                        % (path, path[:-4] + ".%s" % format) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						        if vocal_root is not None: | 
					
					
						
						| 
							 | 
						            if self.data["high_end_process"].startswith("mirroring"): | 
					
					
						
						| 
							 | 
						                input_high_end_ = spec_utils.mirroring( | 
					
					
						
						| 
							 | 
						                    self.data["high_end_process"], v_spec_m, input_high_end, self.mp | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                wav_vocals = spec_utils.cmb_spectrogram_to_wave( | 
					
					
						
						| 
							 | 
						                    v_spec_m, self.mp, input_high_end_h, input_high_end_ | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) | 
					
					
						
						| 
							 | 
						            print("%s vocals done" % name) | 
					
					
						
						| 
							 | 
						            if format in ["wav", "flac"]: | 
					
					
						
						| 
							 | 
						                sf.write( | 
					
					
						
						| 
							 | 
						                    os.path.join( | 
					
					
						
						| 
							 | 
						                        vocal_root, | 
					
					
						
						| 
							 | 
						                        "vocal_{}_{}.{}".format(name, self.data["agg"], format), | 
					
					
						
						| 
							 | 
						                    ), | 
					
					
						
						| 
							 | 
						                    (np.array(wav_vocals) * 32768).astype("int16"), | 
					
					
						
						| 
							 | 
						                    self.mp.param["sr"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                path = os.path.join( | 
					
					
						
						| 
							 | 
						                    vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"]) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                sf.write( | 
					
					
						
						| 
							 | 
						                    path, | 
					
					
						
						| 
							 | 
						                    (np.array(wav_vocals) * 32768).astype("int16"), | 
					
					
						
						| 
							 | 
						                    self.mp.param["sr"], | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                if os.path.exists(path): | 
					
					
						
						| 
							 | 
						                    os.system( | 
					
					
						
						| 
							 | 
						                        "ffmpeg -i %s -vn %s -q:a 2 -y" | 
					
					
						
						| 
							 | 
						                        % (path, path[:-4] + ".%s" % format) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    device = "cuda" | 
					
					
						
						| 
							 | 
						    is_half = True | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    model_path = "uvr5_weights/DeEchoNormal.pth" | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    pre_fun = _audio_pre_new(model_path=model_path, device=device, is_half=True, agg=10) | 
					
					
						
						| 
							 | 
						    audio_path = "雪雪伴奏对消HP5.wav" | 
					
					
						
						| 
							 | 
						    save_path = "opt" | 
					
					
						
						| 
							 | 
						    pre_fun._path_audio_(audio_path, save_path, save_path) | 
					
					
						
						| 
							 | 
						
 |