|
|
import zipfile, glob, subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
|
|
|
from mega import Mega
|
|
|
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
|
|
import threading
|
|
|
from time import sleep
|
|
|
from subprocess import Popen
|
|
|
import faiss
|
|
|
from random import shuffle
|
|
|
import json, datetime, requests
|
|
|
from gtts import gTTS
|
|
|
now_dir = os.getcwd()
|
|
|
sys.path.append(now_dir)
|
|
|
tmp = os.path.join(now_dir, "TEMP")
|
|
|
shutil.rmtree(tmp, ignore_errors=True)
|
|
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
|
|
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
|
|
os.makedirs(tmp, exist_ok=True)
|
|
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
|
|
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
|
|
os.environ["TEMP"] = tmp
|
|
|
warnings.filterwarnings("ignore")
|
|
|
torch.manual_seed(114514)
|
|
|
from i18n import I18nAuto
|
|
|
import ffmpeg
|
|
|
|
|
|
|
|
|
i18n = I18nAuto()
|
|
|
|
|
|
|
|
|
ngpu = torch.cuda.device_count()
|
|
|
gpu_infos = []
|
|
|
mem = []
|
|
|
if (not torch.cuda.is_available()) or ngpu == 0:
|
|
|
if_gpu_ok = False
|
|
|
else:
|
|
|
if_gpu_ok = False
|
|
|
for i in range(ngpu):
|
|
|
gpu_name = torch.cuda.get_device_name(i)
|
|
|
if (
|
|
|
"10" in gpu_name
|
|
|
or "16" in gpu_name
|
|
|
or "20" in gpu_name
|
|
|
or "30" in gpu_name
|
|
|
or "40" in gpu_name
|
|
|
or "A2" in gpu_name.upper()
|
|
|
or "A3" in gpu_name.upper()
|
|
|
or "A4" in gpu_name.upper()
|
|
|
or "P4" in gpu_name.upper()
|
|
|
or "A50" in gpu_name.upper()
|
|
|
or "A60" in gpu_name.upper()
|
|
|
or "70" in gpu_name
|
|
|
or "80" in gpu_name
|
|
|
or "90" in gpu_name
|
|
|
or "M4" in gpu_name.upper()
|
|
|
or "T4" in gpu_name.upper()
|
|
|
or "TITAN" in gpu_name.upper()
|
|
|
):
|
|
|
if_gpu_ok = True
|
|
|
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
|
|
mem.append(
|
|
|
int(
|
|
|
torch.cuda.get_device_properties(i).total_memory
|
|
|
/ 1024
|
|
|
/ 1024
|
|
|
/ 1024
|
|
|
+ 0.4
|
|
|
)
|
|
|
)
|
|
|
if if_gpu_ok == True and len(gpu_infos) > 0:
|
|
|
gpu_info = "\n".join(gpu_infos)
|
|
|
default_batch_size = min(mem) // 2
|
|
|
else:
|
|
|
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
|
|
default_batch_size = 1
|
|
|
gpus = "-".join([i[0] for i in gpu_infos])
|
|
|
from infer_pack.models import (
|
|
|
SynthesizerTrnMs256NSFsid,
|
|
|
SynthesizerTrnMs256NSFsid_nono,
|
|
|
SynthesizerTrnMs768NSFsid,
|
|
|
SynthesizerTrnMs768NSFsid_nono,
|
|
|
)
|
|
|
import soundfile as sf
|
|
|
from fairseq import checkpoint_utils
|
|
|
import gradio as gr
|
|
|
import logging
|
|
|
from vc_infer_pipeline import VC
|
|
|
from config import Config
|
|
|
from infer_uvr5 import _audio_pre_, _audio_pre_new
|
|
|
from my_utils import load_audio
|
|
|
from train.process_ckpt import show_info, change_info, merge, extract_small_model
|
|
|
|
|
|
config = Config()
|
|
|
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
|
|
|
|
|
hubert_model = None
|
|
|
|
|
|
def load_hubert():
|
|
|
global hubert_model
|
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
|
|
["hubert_base.pt"],
|
|
|
suffix="",
|
|
|
)
|
|
|
hubert_model = models[0]
|
|
|
hubert_model = hubert_model.to(config.device)
|
|
|
if config.is_half:
|
|
|
hubert_model = hubert_model.half()
|
|
|
else:
|
|
|
hubert_model = hubert_model.float()
|
|
|
hubert_model.eval()
|
|
|
|
|
|
|
|
|
weight_root = "weights"
|
|
|
weight_uvr5_root = "uvr5_weights"
|
|
|
index_root = "logs"
|
|
|
names = []
|
|
|
for name in os.listdir(weight_root):
|
|
|
if name.endswith(".pth"):
|
|
|
names.append(name)
|
|
|
index_paths = []
|
|
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
|
|
for name in files:
|
|
|
if name.endswith(".index") and "trained" not in name:
|
|
|
index_paths.append("%s/%s" % (root, name))
|
|
|
uvr5_names = []
|
|
|
for name in os.listdir(weight_uvr5_root):
|
|
|
if name.endswith(".pth") or "onnx" in name:
|
|
|
uvr5_names.append(name.replace(".pth", ""))
|
|
|
|
|
|
|
|
|
def vc_single(
|
|
|
sid,
|
|
|
input_audio_path,
|
|
|
f0_up_key,
|
|
|
f0_file,
|
|
|
f0_method,
|
|
|
file_index,
|
|
|
|
|
|
|
|
|
index_rate,
|
|
|
filter_radius,
|
|
|
resample_sr,
|
|
|
rms_mix_rate,
|
|
|
protect,
|
|
|
crepe_hop_length,
|
|
|
):
|
|
|
global tgt_sr, net_g, vc, hubert_model, version
|
|
|
if input_audio_path is None:
|
|
|
return "You need to upload an audio", None
|
|
|
f0_up_key = int(f0_up_key)
|
|
|
try:
|
|
|
audio = load_audio(input_audio_path, 16000)
|
|
|
audio_max = np.abs(audio).max() / 0.95
|
|
|
if audio_max > 1:
|
|
|
audio /= audio_max
|
|
|
times = [0, 0, 0]
|
|
|
if hubert_model == None:
|
|
|
load_hubert()
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
|
file_index = (
|
|
|
(
|
|
|
file_index.strip(" ")
|
|
|
.strip('"')
|
|
|
.strip("\n")
|
|
|
.strip('"')
|
|
|
.strip(" ")
|
|
|
.replace("trained", "added")
|
|
|
)
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
audio_opt = vc.pipeline(
|
|
|
hubert_model,
|
|
|
net_g,
|
|
|
sid,
|
|
|
audio,
|
|
|
input_audio_path,
|
|
|
times,
|
|
|
f0_up_key,
|
|
|
f0_method,
|
|
|
file_index,
|
|
|
|
|
|
index_rate,
|
|
|
if_f0,
|
|
|
filter_radius,
|
|
|
tgt_sr,
|
|
|
resample_sr,
|
|
|
rms_mix_rate,
|
|
|
version,
|
|
|
protect,
|
|
|
crepe_hop_length,
|
|
|
f0_file=f0_file,
|
|
|
)
|
|
|
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
|
|
tgt_sr = resample_sr
|
|
|
index_info = (
|
|
|
"Using index:%s." % file_index
|
|
|
if os.path.exists(file_index)
|
|
|
else "Index not used."
|
|
|
)
|
|
|
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
|
|
index_info,
|
|
|
times[0],
|
|
|
times[1],
|
|
|
times[2],
|
|
|
), (tgt_sr, audio_opt)
|
|
|
except:
|
|
|
info = traceback.format_exc()
|
|
|
print(info)
|
|
|
return info, (None, None)
|
|
|
|
|
|
|
|
|
def vc_multi(
|
|
|
sid,
|
|
|
dir_path,
|
|
|
opt_root,
|
|
|
paths,
|
|
|
f0_up_key,
|
|
|
f0_method,
|
|
|
file_index,
|
|
|
file_index2,
|
|
|
|
|
|
index_rate,
|
|
|
filter_radius,
|
|
|
resample_sr,
|
|
|
rms_mix_rate,
|
|
|
protect,
|
|
|
format1,
|
|
|
crepe_hop_length,
|
|
|
):
|
|
|
try:
|
|
|
dir_path = (
|
|
|
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
)
|
|
|
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
os.makedirs(opt_root, exist_ok=True)
|
|
|
try:
|
|
|
if dir_path != "":
|
|
|
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
|
|
|
else:
|
|
|
paths = [path.name for path in paths]
|
|
|
except:
|
|
|
traceback.print_exc()
|
|
|
paths = [path.name for path in paths]
|
|
|
infos = []
|
|
|
for path in paths:
|
|
|
info, opt = vc_single(
|
|
|
sid,
|
|
|
path,
|
|
|
f0_up_key,
|
|
|
None,
|
|
|
f0_method,
|
|
|
file_index,
|
|
|
file_index2,
|
|
|
|
|
|
index_rate,
|
|
|
filter_radius,
|
|
|
resample_sr,
|
|
|
rms_mix_rate,
|
|
|
protect,
|
|
|
crepe_hop_length
|
|
|
)
|
|
|
if "Success" in info:
|
|
|
try:
|
|
|
tgt_sr, audio_opt = opt
|
|
|
if format1 in ["wav", "flac"]:
|
|
|
sf.write(
|
|
|
"%s/%s.%s" % (opt_root, os.path.basename(path), format1),
|
|
|
audio_opt,
|
|
|
tgt_sr,
|
|
|
)
|
|
|
else:
|
|
|
path = "%s/%s.wav" % (opt_root, os.path.basename(path))
|
|
|
sf.write(
|
|
|
path,
|
|
|
audio_opt,
|
|
|
tgt_sr,
|
|
|
)
|
|
|
if os.path.exists(path):
|
|
|
os.system(
|
|
|
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
|
|
% (path, path[:-4] + ".%s" % format1)
|
|
|
)
|
|
|
except:
|
|
|
info += traceback.format_exc()
|
|
|
infos.append("%s->%s" % (os.path.basename(path), info))
|
|
|
yield "\n".join(infos)
|
|
|
yield "\n".join(infos)
|
|
|
except:
|
|
|
yield traceback.format_exc()
|
|
|
|
|
|
|
|
|
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
|
|
|
infos = []
|
|
|
try:
|
|
|
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
save_root_vocal = (
|
|
|
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
)
|
|
|
save_root_ins = (
|
|
|
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
)
|
|
|
if model_name == "onnx_dereverb_By_FoxJoy":
|
|
|
pre_fun = MDXNetDereverb(15)
|
|
|
else:
|
|
|
func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new
|
|
|
pre_fun = func(
|
|
|
agg=int(agg),
|
|
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
|
|
|
device=config.device,
|
|
|
is_half=config.is_half,
|
|
|
)
|
|
|
if inp_root != "":
|
|
|
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
|
|
else:
|
|
|
paths = [path.name for path in paths]
|
|
|
for path in paths:
|
|
|
inp_path = os.path.join(inp_root, path)
|
|
|
need_reformat = 1
|
|
|
done = 0
|
|
|
try:
|
|
|
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
|
|
if (
|
|
|
info["streams"][0]["channels"] == 2
|
|
|
and info["streams"][0]["sample_rate"] == "44100"
|
|
|
):
|
|
|
need_reformat = 0
|
|
|
pre_fun._path_audio_(
|
|
|
inp_path, save_root_ins, save_root_vocal, format0
|
|
|
)
|
|
|
done = 1
|
|
|
except:
|
|
|
need_reformat = 1
|
|
|
traceback.print_exc()
|
|
|
if need_reformat == 1:
|
|
|
tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path))
|
|
|
os.system(
|
|
|
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y"
|
|
|
% (inp_path, tmp_path)
|
|
|
)
|
|
|
inp_path = tmp_path
|
|
|
try:
|
|
|
if done == 0:
|
|
|
pre_fun._path_audio_(
|
|
|
inp_path, save_root_ins, save_root_vocal, format0
|
|
|
)
|
|
|
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
|
|
yield "\n".join(infos)
|
|
|
except:
|
|
|
infos.append(
|
|
|
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
|
|
)
|
|
|
yield "\n".join(infos)
|
|
|
except:
|
|
|
infos.append(traceback.format_exc())
|
|
|
yield "\n".join(infos)
|
|
|
finally:
|
|
|
try:
|
|
|
if model_name == "onnx_dereverb_By_FoxJoy":
|
|
|
del pre_fun.pred.model
|
|
|
del pre_fun.pred.model_
|
|
|
else:
|
|
|
del pre_fun.model
|
|
|
del pre_fun
|
|
|
except:
|
|
|
traceback.print_exc()
|
|
|
print("clean_empty_cache")
|
|
|
if torch.cuda.is_available():
|
|
|
torch.cuda.empty_cache()
|
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
|
|
|
|
def get_vc(sid):
|
|
|
global n_spk, tgt_sr, net_g, vc, cpt, version
|
|
|
if sid == "" or sid == []:
|
|
|
global hubert_model
|
|
|
if hubert_model != None:
|
|
|
print("clean_empty_cache")
|
|
|
del net_g, n_spk, vc, hubert_model, tgt_sr
|
|
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
|
|
if torch.cuda.is_available():
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
|
version = cpt.get("version", "v1")
|
|
|
if version == "v1":
|
|
|
if if_f0 == 1:
|
|
|
net_g = SynthesizerTrnMs256NSFsid(
|
|
|
*cpt["config"], is_half=config.is_half
|
|
|
)
|
|
|
else:
|
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
|
elif version == "v2":
|
|
|
if if_f0 == 1:
|
|
|
net_g = SynthesizerTrnMs768NSFsid(
|
|
|
*cpt["config"], is_half=config.is_half
|
|
|
)
|
|
|
else:
|
|
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
|
|
del net_g, cpt
|
|
|
if torch.cuda.is_available():
|
|
|
torch.cuda.empty_cache()
|
|
|
cpt = None
|
|
|
return {"visible": False, "__type__": "update"}
|
|
|
person = "%s/%s" % (weight_root, sid)
|
|
|
print("loading %s" % person)
|
|
|
cpt = torch.load(person, map_location="cpu")
|
|
|
tgt_sr = cpt["config"][-1]
|
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
|
version = cpt.get("version", "v1")
|
|
|
if version == "v1":
|
|
|
if if_f0 == 1:
|
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
|
|
else:
|
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
|
elif version == "v2":
|
|
|
if if_f0 == 1:
|
|
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
|
|
else:
|
|
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
|
|
del net_g.enc_q
|
|
|
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
|
|
net_g.eval().to(config.device)
|
|
|
if config.is_half:
|
|
|
net_g = net_g.half()
|
|
|
else:
|
|
|
net_g = net_g.float()
|
|
|
vc = VC(tgt_sr, config)
|
|
|
n_spk = cpt["config"][-3]
|
|
|
return {"visible": False, "maximum": n_spk, "__type__": "update"}
|
|
|
|
|
|
|
|
|
def change_choices():
|
|
|
names = []
|
|
|
for name in os.listdir(weight_root):
|
|
|
if name.endswith(".pth"):
|
|
|
names.append(name)
|
|
|
index_paths = []
|
|
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
|
|
for name in files:
|
|
|
if name.endswith(".index") and "trained" not in name:
|
|
|
index_paths.append("%s/%s" % (root, name))
|
|
|
return {"choices": sorted(names), "__type__": "update"}, {
|
|
|
"choices": sorted(index_paths),
|
|
|
"__type__": "update",
|
|
|
}
|
|
|
|
|
|
|
|
|
def clean():
|
|
|
return {"value": "", "__type__": "update"}
|
|
|
|
|
|
|
|
|
sr_dict = {
|
|
|
"32k": 32000,
|
|
|
"40k": 40000,
|
|
|
"48k": 48000,
|
|
|
}
|
|
|
|
|
|
|
|
|
def if_done(done, p):
|
|
|
while 1:
|
|
|
if p.poll() == None:
|
|
|
sleep(0.5)
|
|
|
else:
|
|
|
break
|
|
|
done[0] = True
|
|
|
|
|
|
|
|
|
def if_done_multi(done, ps):
|
|
|
while 1:
|
|
|
|
|
|
|
|
|
flag = 1
|
|
|
for p in ps:
|
|
|
if p.poll() == None:
|
|
|
flag = 0
|
|
|
sleep(0.5)
|
|
|
break
|
|
|
if flag == 1:
|
|
|
break
|
|
|
done[0] = True
|
|
|
|
|
|
|
|
|
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
|
|
sr = sr_dict[sr]
|
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
|
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
|
|
f.close()
|
|
|
cmd = (
|
|
|
config.python_cmd
|
|
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
|
|
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
|
|
+ str(config.noparallel)
|
|
|
)
|
|
|
print(cmd)
|
|
|
p = Popen(cmd, shell=True)
|
|
|
|
|
|
done = [False]
|
|
|
threading.Thread(
|
|
|
target=if_done,
|
|
|
args=(
|
|
|
done,
|
|
|
p,
|
|
|
),
|
|
|
).start()
|
|
|
while 1:
|
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
|
yield (f.read())
|
|
|
sleep(1)
|
|
|
if done[0] == True:
|
|
|
break
|
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
|
log = f.read()
|
|
|
print(log)
|
|
|
yield log
|
|
|
|
|
|
|
|
|
|
|
|
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
|
|
|
gpus = gpus.split("-")
|
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
|
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
|
|
f.close()
|
|
|
if if_f0:
|
|
|
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % (
|
|
|
now_dir,
|
|
|
exp_dir,
|
|
|
n_p,
|
|
|
f0method,
|
|
|
echl,
|
|
|
)
|
|
|
print(cmd)
|
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
|
|
|
done = [False]
|
|
|
threading.Thread(
|
|
|
target=if_done,
|
|
|
args=(
|
|
|
done,
|
|
|
p,
|
|
|
),
|
|
|
).start()
|
|
|
while 1:
|
|
|
with open(
|
|
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
|
|
) as f:
|
|
|
yield (f.read())
|
|
|
sleep(1)
|
|
|
if done[0] == True:
|
|
|
break
|
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
|
log = f.read()
|
|
|
print(log)
|
|
|
yield log
|
|
|
|
|
|
"""
|
|
|
n_part=int(sys.argv[1])
|
|
|
i_part=int(sys.argv[2])
|
|
|
i_gpu=sys.argv[3]
|
|
|
exp_dir=sys.argv[4]
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
|
|
"""
|
|
|
leng = len(gpus)
|
|
|
ps = []
|
|
|
for idx, n_g in enumerate(gpus):
|
|
|
cmd = (
|
|
|
config.python_cmd
|
|
|
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
|
|
|
% (
|
|
|
config.device,
|
|
|
leng,
|
|
|
idx,
|
|
|
n_g,
|
|
|
now_dir,
|
|
|
exp_dir,
|
|
|
version19,
|
|
|
)
|
|
|
)
|
|
|
print(cmd)
|
|
|
p = Popen(
|
|
|
cmd, shell=True, cwd=now_dir
|
|
|
)
|
|
|
ps.append(p)
|
|
|
|
|
|
done = [False]
|
|
|
threading.Thread(
|
|
|
target=if_done_multi,
|
|
|
args=(
|
|
|
done,
|
|
|
ps,
|
|
|
),
|
|
|
).start()
|
|
|
while 1:
|
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
|
yield (f.read())
|
|
|
sleep(1)
|
|
|
if done[0] == True:
|
|
|
break
|
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
|
log = f.read()
|
|
|
print(log)
|
|
|
yield log
|
|
|
|
|
|
|
|
|
def change_sr2(sr2, if_f0_3, version19):
|
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
|
f0_str = "f0" if if_f0_3 else ""
|
|
|
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
|
|
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
|
|
if (if_pretrained_generator_exist == False):
|
|
|
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
|
|
if (if_pretrained_discriminator_exist == False):
|
|
|
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
|
|
return (
|
|
|
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
|
|
|
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
|
|
|
{"visible": True, "__type__": "update"}
|
|
|
)
|
|
|
|
|
|
def change_version19(sr2, if_f0_3, version19):
|
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
|
f0_str = "f0" if if_f0_3 else ""
|
|
|
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
|
|
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
|
|
if (if_pretrained_generator_exist == False):
|
|
|
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
|
|
if (if_pretrained_discriminator_exist == False):
|
|
|
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
|
|
return (
|
|
|
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
|
|
|
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
|
|
|
)
|
|
|
|
|
|
|
|
|
def change_f0(if_f0_3, sr2, version19):
|
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
|
if_pretrained_generator_exist = os.access("pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK)
|
|
|
if_pretrained_discriminator_exist = os.access("pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK)
|
|
|
if (if_pretrained_generator_exist == False):
|
|
|
print("pretrained%s/f0G%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
|
|
|
if (if_pretrained_discriminator_exist == False):
|
|
|
print("pretrained%s/f0D%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
|
|
|
if if_f0_3:
|
|
|
return (
|
|
|
{"visible": True, "__type__": "update"},
|
|
|
"pretrained%s/f0G%s.pth" % (path_str, sr2) if if_pretrained_generator_exist else "",
|
|
|
"pretrained%s/f0D%s.pth" % (path_str, sr2) if if_pretrained_discriminator_exist else "",
|
|
|
)
|
|
|
return (
|
|
|
{"visible": False, "__type__": "update"},
|
|
|
("pretrained%s/G%s.pth" % (path_str, sr2)) if if_pretrained_generator_exist else "",
|
|
|
("pretrained%s/D%s.pth" % (path_str, sr2)) if if_pretrained_discriminator_exist else "",
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def click_train(
|
|
|
exp_dir1,
|
|
|
sr2,
|
|
|
if_f0_3,
|
|
|
spk_id5,
|
|
|
save_epoch10,
|
|
|
total_epoch11,
|
|
|
batch_size12,
|
|
|
if_save_latest13,
|
|
|
pretrained_G14,
|
|
|
pretrained_D15,
|
|
|
gpus16,
|
|
|
if_cache_gpu17,
|
|
|
if_save_every_weights18,
|
|
|
version19,
|
|
|
):
|
|
|
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
|
os.makedirs(exp_dir, exist_ok=True)
|
|
|
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
|
|
feature_dir = (
|
|
|
"%s/3_feature256" % (exp_dir)
|
|
|
if version19 == "v1"
|
|
|
else "%s/3_feature768" % (exp_dir)
|
|
|
)
|
|
|
if if_f0_3:
|
|
|
f0_dir = "%s/2a_f0" % (exp_dir)
|
|
|
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
|
|
names = (
|
|
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
|
|
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
|
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
|
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
|
|
)
|
|
|
else:
|
|
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
|
|
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
|
|
)
|
|
|
opt = []
|
|
|
for name in names:
|
|
|
if if_f0_3:
|
|
|
opt.append(
|
|
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
|
|
% (
|
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
feature_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
f0_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
f0nsf_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
spk_id5,
|
|
|
)
|
|
|
)
|
|
|
else:
|
|
|
opt.append(
|
|
|
"%s/%s.wav|%s/%s.npy|%s"
|
|
|
% (
|
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
feature_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
spk_id5,
|
|
|
)
|
|
|
)
|
|
|
fea_dim = 256 if version19 == "v1" else 768
|
|
|
if if_f0_3:
|
|
|
for _ in range(2):
|
|
|
opt.append(
|
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
|
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
|
|
)
|
|
|
else:
|
|
|
for _ in range(2):
|
|
|
opt.append(
|
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
|
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
|
|
)
|
|
|
shuffle(opt)
|
|
|
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
|
|
f.write("\n".join(opt))
|
|
|
print("write filelist done")
|
|
|
|
|
|
|
|
|
print("use gpus:", gpus16)
|
|
|
if pretrained_G14 == "":
|
|
|
print("no pretrained Generator")
|
|
|
if pretrained_D15 == "":
|
|
|
print("no pretrained Discriminator")
|
|
|
if gpus16:
|
|
|
cmd = (
|
|
|
config.python_cmd
|
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
|
|
% (
|
|
|
exp_dir1,
|
|
|
sr2,
|
|
|
1 if if_f0_3 else 0,
|
|
|
batch_size12,
|
|
|
gpus16,
|
|
|
total_epoch11,
|
|
|
save_epoch10,
|
|
|
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
|
|
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
|
|
1 if if_save_latest13 == i18n("是") else 0,
|
|
|
1 if if_cache_gpu17 == i18n("是") else 0,
|
|
|
1 if if_save_every_weights18 == i18n("是") else 0,
|
|
|
version19,
|
|
|
)
|
|
|
)
|
|
|
else:
|
|
|
cmd = (
|
|
|
config.python_cmd
|
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
|
|
% (
|
|
|
exp_dir1,
|
|
|
sr2,
|
|
|
1 if if_f0_3 else 0,
|
|
|
batch_size12,
|
|
|
total_epoch11,
|
|
|
save_epoch10,
|
|
|
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "\b",
|
|
|
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "\b",
|
|
|
1 if if_save_latest13 == i18n("是") else 0,
|
|
|
1 if if_cache_gpu17 == i18n("是") else 0,
|
|
|
1 if if_save_every_weights18 == i18n("是") else 0,
|
|
|
version19,
|
|
|
)
|
|
|
)
|
|
|
print(cmd)
|
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
p.wait()
|
|
|
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
|
|
|
|
|
|
|
|
|
|
|
def train_index(exp_dir1, version19):
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
|
os.makedirs(exp_dir, exist_ok=True)
|
|
|
feature_dir = (
|
|
|
"%s/3_feature256" % (exp_dir)
|
|
|
if version19 == "v1"
|
|
|
else "%s/3_feature768" % (exp_dir)
|
|
|
)
|
|
|
if os.path.exists(feature_dir) == False:
|
|
|
return "请先进行特征提取!"
|
|
|
listdir_res = list(os.listdir(feature_dir))
|
|
|
if len(listdir_res) == 0:
|
|
|
return "请先进行特征提取!"
|
|
|
npys = []
|
|
|
for name in sorted(listdir_res):
|
|
|
phone = np.load("%s/%s" % (feature_dir, name))
|
|
|
npys.append(phone)
|
|
|
big_npy = np.concatenate(npys, 0)
|
|
|
big_npy_idx = np.arange(big_npy.shape[0])
|
|
|
np.random.shuffle(big_npy_idx)
|
|
|
big_npy = big_npy[big_npy_idx]
|
|
|
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
|
|
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
|
|
infos = []
|
|
|
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
|
|
yield "\n".join(infos)
|
|
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
|
|
|
|
|
infos.append("training")
|
|
|
yield "\n".join(infos)
|
|
|
index_ivf = faiss.extract_index_ivf(index)
|
|
|
index_ivf.nprobe = 1
|
|
|
index.train(big_npy)
|
|
|
faiss.write_index(
|
|
|
index,
|
|
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
|
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
|
|
)
|
|
|
|
|
|
infos.append("adding")
|
|
|
yield "\n".join(infos)
|
|
|
batch_size_add = 8192
|
|
|
for i in range(0, big_npy.shape[0], batch_size_add):
|
|
|
index.add(big_npy[i : i + batch_size_add])
|
|
|
faiss.write_index(
|
|
|
index,
|
|
|
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
|
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
|
|
)
|
|
|
infos.append(
|
|
|
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
|
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
|
|
)
|
|
|
|
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
|
|
|
|
def train1key(
|
|
|
exp_dir1,
|
|
|
sr2,
|
|
|
if_f0_3,
|
|
|
trainset_dir4,
|
|
|
spk_id5,
|
|
|
np7,
|
|
|
f0method8,
|
|
|
save_epoch10,
|
|
|
total_epoch11,
|
|
|
batch_size12,
|
|
|
if_save_latest13,
|
|
|
pretrained_G14,
|
|
|
pretrained_D15,
|
|
|
gpus16,
|
|
|
if_cache_gpu17,
|
|
|
if_save_every_weights18,
|
|
|
version19,
|
|
|
echl
|
|
|
):
|
|
|
infos = []
|
|
|
|
|
|
def get_info_str(strr):
|
|
|
infos.append(strr)
|
|
|
return "\n".join(infos)
|
|
|
|
|
|
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
|
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
|
|
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
|
|
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
|
|
feature_dir = (
|
|
|
"%s/3_feature256" % model_log_dir
|
|
|
if version19 == "v1"
|
|
|
else "%s/3_feature768" % model_log_dir
|
|
|
)
|
|
|
|
|
|
os.makedirs(model_log_dir, exist_ok=True)
|
|
|
|
|
|
open(preprocess_log_path, "w").close()
|
|
|
cmd = (
|
|
|
config.python_cmd
|
|
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s "
|
|
|
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
|
|
|
+ str(config.noparallel)
|
|
|
)
|
|
|
yield get_info_str(i18n("step1:正在处理数据"))
|
|
|
yield get_info_str(cmd)
|
|
|
p = Popen(cmd, shell=True)
|
|
|
p.wait()
|
|
|
with open(preprocess_log_path, "r") as f:
|
|
|
print(f.read())
|
|
|
|
|
|
open(extract_f0_feature_log_path, "w")
|
|
|
if if_f0_3:
|
|
|
yield get_info_str("step2a:正在提取音高")
|
|
|
cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % (
|
|
|
model_log_dir,
|
|
|
np7,
|
|
|
f0method8,
|
|
|
echl
|
|
|
)
|
|
|
yield get_info_str(cmd)
|
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
p.wait()
|
|
|
with open(extract_f0_feature_log_path, "r") as f:
|
|
|
print(f.read())
|
|
|
else:
|
|
|
yield get_info_str(i18n("step2a:无需提取音高"))
|
|
|
|
|
|
yield get_info_str(i18n("step2b:正在提取特征"))
|
|
|
gpus = gpus16.split("-")
|
|
|
leng = len(gpus)
|
|
|
ps = []
|
|
|
for idx, n_g in enumerate(gpus):
|
|
|
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % (
|
|
|
config.device,
|
|
|
leng,
|
|
|
idx,
|
|
|
n_g,
|
|
|
model_log_dir,
|
|
|
version19,
|
|
|
)
|
|
|
yield get_info_str(cmd)
|
|
|
p = Popen(
|
|
|
cmd, shell=True, cwd=now_dir
|
|
|
)
|
|
|
ps.append(p)
|
|
|
for p in ps:
|
|
|
p.wait()
|
|
|
with open(extract_f0_feature_log_path, "r") as f:
|
|
|
print(f.read())
|
|
|
|
|
|
yield get_info_str(i18n("step3a:正在训练模型"))
|
|
|
|
|
|
if if_f0_3:
|
|
|
f0_dir = "%s/2a_f0" % model_log_dir
|
|
|
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
|
|
|
names = (
|
|
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
|
|
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
|
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
|
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
|
|
)
|
|
|
else:
|
|
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
|
|
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
|
|
)
|
|
|
opt = []
|
|
|
for name in names:
|
|
|
if if_f0_3:
|
|
|
opt.append(
|
|
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
|
|
% (
|
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
feature_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
f0_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
f0nsf_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
spk_id5,
|
|
|
)
|
|
|
)
|
|
|
else:
|
|
|
opt.append(
|
|
|
"%s/%s.wav|%s/%s.npy|%s"
|
|
|
% (
|
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
feature_dir.replace("\\", "\\\\"),
|
|
|
name,
|
|
|
spk_id5,
|
|
|
)
|
|
|
)
|
|
|
fea_dim = 256 if version19 == "v1" else 768
|
|
|
if if_f0_3:
|
|
|
for _ in range(2):
|
|
|
opt.append(
|
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
|
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
|
|
)
|
|
|
else:
|
|
|
for _ in range(2):
|
|
|
opt.append(
|
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
|
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
|
|
)
|
|
|
shuffle(opt)
|
|
|
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
|
|
f.write("\n".join(opt))
|
|
|
yield get_info_str("write filelist done")
|
|
|
if gpus16:
|
|
|
cmd = (
|
|
|
config.python_cmd
|
|
|
+" train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
|
|
% (
|
|
|
exp_dir1,
|
|
|
sr2,
|
|
|
1 if if_f0_3 else 0,
|
|
|
batch_size12,
|
|
|
gpus16,
|
|
|
total_epoch11,
|
|
|
save_epoch10,
|
|
|
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
|
|
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
|
|
1 if if_save_latest13 == i18n("是") else 0,
|
|
|
1 if if_cache_gpu17 == i18n("是") else 0,
|
|
|
1 if if_save_every_weights18 == i18n("是") else 0,
|
|
|
version19,
|
|
|
)
|
|
|
)
|
|
|
else:
|
|
|
cmd = (
|
|
|
config.python_cmd
|
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
|
|
% (
|
|
|
exp_dir1,
|
|
|
sr2,
|
|
|
1 if if_f0_3 else 0,
|
|
|
batch_size12,
|
|
|
total_epoch11,
|
|
|
save_epoch10,
|
|
|
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
|
|
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
|
|
1 if if_save_latest13 == i18n("是") else 0,
|
|
|
1 if if_cache_gpu17 == i18n("是") else 0,
|
|
|
1 if if_save_every_weights18 == i18n("是") else 0,
|
|
|
version19,
|
|
|
)
|
|
|
)
|
|
|
yield get_info_str(cmd)
|
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
p.wait()
|
|
|
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
|
|
|
|
|
npys = []
|
|
|
listdir_res = list(os.listdir(feature_dir))
|
|
|
for name in sorted(listdir_res):
|
|
|
phone = np.load("%s/%s" % (feature_dir, name))
|
|
|
npys.append(phone)
|
|
|
big_npy = np.concatenate(npys, 0)
|
|
|
|
|
|
big_npy_idx = np.arange(big_npy.shape[0])
|
|
|
np.random.shuffle(big_npy_idx)
|
|
|
big_npy = big_npy[big_npy_idx]
|
|
|
np.save("%s/total_fea.npy" % model_log_dir, big_npy)
|
|
|
|
|
|
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
|
|
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
|
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
|
|
yield get_info_str("training index")
|
|
|
index_ivf = faiss.extract_index_ivf(index)
|
|
|
index_ivf.nprobe = 1
|
|
|
index.train(big_npy)
|
|
|
faiss.write_index(
|
|
|
index,
|
|
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
|
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
|
|
)
|
|
|
yield get_info_str("adding index")
|
|
|
batch_size_add = 8192
|
|
|
for i in range(0, big_npy.shape[0], batch_size_add):
|
|
|
index.add(big_npy[i : i + batch_size_add])
|
|
|
faiss.write_index(
|
|
|
index,
|
|
|
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
|
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
|
|
)
|
|
|
yield get_info_str(
|
|
|
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
|
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
|
|
)
|
|
|
yield get_info_str(i18n("全流程结束!"))
|
|
|
|
|
|
|
|
|
|
|
|
def change_info_(ckpt_path):
|
|
|
if (
|
|
|
os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
|
|
|
== False
|
|
|
):
|
|
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
|
|
try:
|
|
|
with open(
|
|
|
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
|
|
) as f:
|
|
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
|
|
sr, f0 = info["sample_rate"], info["if_f0"]
|
|
|
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
|
|
return sr, str(f0), version
|
|
|
except:
|
|
|
traceback.print_exc()
|
|
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
|
|
|
|
|
|
|
|
from infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
|
|
|
|
|
|
|
|
|
def export_onnx(ModelPath, ExportedPath, MoeVS=True):
|
|
|
cpt = torch.load(ModelPath, map_location="cpu")
|
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
|
hidden_channels = 256 if cpt.get("version","v1")=="v1"else 768
|
|
|
|
|
|
test_phone = torch.rand(1, 200, hidden_channels)
|
|
|
test_phone_lengths = torch.tensor([200]).long()
|
|
|
test_pitch = torch.randint(size=(1, 200), low=5, high=255)
|
|
|
test_pitchf = torch.rand(1, 200)
|
|
|
test_ds = torch.LongTensor([0])
|
|
|
test_rnd = torch.rand(1, 192, 200)
|
|
|
|
|
|
device = "cpu"
|
|
|
|
|
|
|
|
|
net_g = SynthesizerTrnMsNSFsidM(
|
|
|
*cpt["config"], is_half=False,version=cpt.get("version","v1")
|
|
|
)
|
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
|
|
output_names = [
|
|
|
"audio",
|
|
|
]
|
|
|
|
|
|
torch.onnx.export(
|
|
|
net_g,
|
|
|
(
|
|
|
test_phone.to(device),
|
|
|
test_phone_lengths.to(device),
|
|
|
test_pitch.to(device),
|
|
|
test_pitchf.to(device),
|
|
|
test_ds.to(device),
|
|
|
test_rnd.to(device),
|
|
|
),
|
|
|
ExportedPath,
|
|
|
dynamic_axes={
|
|
|
"phone": [1],
|
|
|
"pitch": [1],
|
|
|
"pitchf": [1],
|
|
|
"rnd": [2],
|
|
|
},
|
|
|
do_constant_folding=False,
|
|
|
opset_version=16,
|
|
|
verbose=False,
|
|
|
input_names=input_names,
|
|
|
output_names=output_names,
|
|
|
)
|
|
|
return "Finished"
|
|
|
|
|
|
|
|
|
|
|
|
import re as regex
|
|
|
import scipy.io.wavfile as wavfile
|
|
|
|
|
|
cli_current_page = "HOME"
|
|
|
|
|
|
def cli_split_command(com):
|
|
|
exp = r'(?:(?<=\s)|^)"(.*?)"(?=\s|$)|(\S+)'
|
|
|
split_array = regex.findall(exp, com)
|
|
|
split_array = [group[0] if group[0] else group[1] for group in split_array]
|
|
|
return split_array
|
|
|
|
|
|
def execute_generator_function(genObject):
|
|
|
for _ in genObject: pass
|
|
|
|
|
|
def cli_infer(com):
|
|
|
|
|
|
com = cli_split_command(com)
|
|
|
model_name = com[0]
|
|
|
source_audio_path = com[1]
|
|
|
output_file_name = com[2]
|
|
|
feature_index_path = com[3]
|
|
|
f0_file = None
|
|
|
|
|
|
|
|
|
speaker_id = int(com[4])
|
|
|
transposition = float(com[5])
|
|
|
f0_method = com[6]
|
|
|
crepe_hop_length = int(com[7])
|
|
|
harvest_median_filter = int(com[8])
|
|
|
resample = int(com[9])
|
|
|
mix = float(com[10])
|
|
|
feature_ratio = float(com[11])
|
|
|
protection_amnt = float(com[12])
|
|
|
|
|
|
print("Mangio-RVC-Fork Infer-CLI: Starting the inference...")
|
|
|
vc_data = get_vc(model_name)
|
|
|
print(vc_data)
|
|
|
print("Mangio-RVC-Fork Infer-CLI: Performing inference...")
|
|
|
conversion_data = vc_single(
|
|
|
speaker_id,
|
|
|
source_audio_path,
|
|
|
transposition,
|
|
|
f0_file,
|
|
|
f0_method,
|
|
|
feature_index_path,
|
|
|
|
|
|
feature_ratio,
|
|
|
harvest_median_filter,
|
|
|
resample,
|
|
|
mix,
|
|
|
protection_amnt,
|
|
|
crepe_hop_length,
|
|
|
)
|
|
|
if "Success." in conversion_data[0]:
|
|
|
print("Mangio-RVC-Fork Infer-CLI: Inference succeeded. Writing to %s/%s..." % ('audio-outputs', output_file_name))
|
|
|
wavfile.write('%s/%s' % ('audio-outputs', output_file_name), conversion_data[1][0], conversion_data[1][1])
|
|
|
print("Mangio-RVC-Fork Infer-CLI: Finished! Saved output to %s/%s" % ('audio-outputs', output_file_name))
|
|
|
else:
|
|
|
print("Mangio-RVC-Fork Infer-CLI: Inference failed. Here's the traceback: ")
|
|
|
print(conversion_data[0])
|
|
|
|
|
|
def cli_pre_process(com):
|
|
|
com = cli_split_command(com)
|
|
|
model_name = com[0]
|
|
|
trainset_directory = com[1]
|
|
|
sample_rate = com[2]
|
|
|
num_processes = int(com[3])
|
|
|
|
|
|
print("Mangio-RVC-Fork Pre-process: Starting...")
|
|
|
generator = preprocess_dataset(
|
|
|
trainset_directory,
|
|
|
model_name,
|
|
|
sample_rate,
|
|
|
num_processes
|
|
|
)
|
|
|
execute_generator_function(generator)
|
|
|
print("Mangio-RVC-Fork Pre-process: Finished")
|
|
|
|
|
|
def cli_extract_feature(com):
|
|
|
com = cli_split_command(com)
|
|
|
model_name = com[0]
|
|
|
gpus = com[1]
|
|
|
num_processes = int(com[2])
|
|
|
has_pitch_guidance = True if (int(com[3]) == 1) else False
|
|
|
f0_method = com[4]
|
|
|
crepe_hop_length = int(com[5])
|
|
|
version = com[6]
|
|
|
|
|
|
print("Mangio-RVC-CLI: Extract Feature Has Pitch: " + str(has_pitch_guidance))
|
|
|
print("Mangio-RVC-CLI: Extract Feature Version: " + str(version))
|
|
|
print("Mangio-RVC-Fork Feature Extraction: Starting...")
|
|
|
generator = extract_f0_feature(
|
|
|
gpus,
|
|
|
num_processes,
|
|
|
f0_method,
|
|
|
has_pitch_guidance,
|
|
|
model_name,
|
|
|
version,
|
|
|
crepe_hop_length
|
|
|
)
|
|
|
execute_generator_function(generator)
|
|
|
print("Mangio-RVC-Fork Feature Extraction: Finished")
|
|
|
|
|
|
def cli_train(com):
|
|
|
com = cli_split_command(com)
|
|
|
model_name = com[0]
|
|
|
sample_rate = com[1]
|
|
|
has_pitch_guidance = True if (int(com[2]) == 1) else False
|
|
|
speaker_id = int(com[3])
|
|
|
save_epoch_iteration = int(com[4])
|
|
|
total_epoch = int(com[5])
|
|
|
batch_size = int(com[6])
|
|
|
gpu_card_slot_numbers = com[7]
|
|
|
if_save_latest = i18n("是") if (int(com[8]) == 1) else i18n("否")
|
|
|
if_cache_gpu = i18n("是") if (int(com[9]) == 1) else i18n("否")
|
|
|
if_save_every_weight = i18n("是") if (int(com[10]) == 1) else i18n("否")
|
|
|
version = com[11]
|
|
|
|
|
|
pretrained_base = "pretrained/" if version == "v1" else "pretrained_v2/"
|
|
|
|
|
|
g_pretrained_path = "%sf0G%s.pth" % (pretrained_base, sample_rate)
|
|
|
d_pretrained_path = "%sf0D%s.pth" % (pretrained_base, sample_rate)
|
|
|
|
|
|
print("Mangio-RVC-Fork Train-CLI: Training...")
|
|
|
click_train(
|
|
|
model_name,
|
|
|
sample_rate,
|
|
|
has_pitch_guidance,
|
|
|
speaker_id,
|
|
|
save_epoch_iteration,
|
|
|
total_epoch,
|
|
|
batch_size,
|
|
|
if_save_latest,
|
|
|
g_pretrained_path,
|
|
|
d_pretrained_path,
|
|
|
gpu_card_slot_numbers,
|
|
|
if_cache_gpu,
|
|
|
if_save_every_weight,
|
|
|
version
|
|
|
)
|
|
|
|
|
|
def cli_train_feature(com):
|
|
|
com = cli_split_command(com)
|
|
|
model_name = com[0]
|
|
|
version = com[1]
|
|
|
print("Mangio-RVC-Fork Train Feature Index-CLI: Training... Please wait")
|
|
|
generator = train_index(
|
|
|
model_name,
|
|
|
version
|
|
|
)
|
|
|
execute_generator_function(generator)
|
|
|
print("Mangio-RVC-Fork Train Feature Index-CLI: Done!")
|
|
|
|
|
|
def cli_extract_model(com):
|
|
|
com = cli_split_command(com)
|
|
|
model_path = com[0]
|
|
|
save_name = com[1]
|
|
|
sample_rate = com[2]
|
|
|
has_pitch_guidance = com[3]
|
|
|
info = com[4]
|
|
|
version = com[5]
|
|
|
extract_small_model_process = extract_small_model(
|
|
|
model_path,
|
|
|
save_name,
|
|
|
sample_rate,
|
|
|
has_pitch_guidance,
|
|
|
info,
|
|
|
version
|
|
|
)
|
|
|
if extract_small_model_process == "Success.":
|
|
|
print("Mangio-RVC-Fork Extract Small Model: Success!")
|
|
|
else:
|
|
|
print(str(extract_small_model_process))
|
|
|
print("Mangio-RVC-Fork Extract Small Model: Failed!")
|
|
|
|
|
|
def print_page_details():
|
|
|
if cli_current_page == "HOME":
|
|
|
print(" go home : Takes you back to home with a navigation list.")
|
|
|
print(" go infer : Takes you to inference command execution.\n")
|
|
|
print(" go pre-process : Takes you to training step.1) pre-process command execution.")
|
|
|
print(" go extract-feature : Takes you to training step.2) extract-feature command execution.")
|
|
|
print(" go train : Takes you to training step.3) being or continue training command execution.")
|
|
|
print(" go train-feature : Takes you to the train feature index command execution.\n")
|
|
|
print(" go extract-model : Takes you to the extract small model command execution.")
|
|
|
elif cli_current_page == "INFER":
|
|
|
print(" arg 1) model name with .pth in ./weights: mi-test.pth")
|
|
|
print(" arg 2) source audio path: myFolder\\MySource.wav")
|
|
|
print(" arg 3) output file name to be placed in './audio-outputs': MyTest.wav")
|
|
|
print(" arg 4) feature index file path: logs/mi-test/added_IVF3042_Flat_nprobe_1.index")
|
|
|
print(" arg 5) speaker id: 0")
|
|
|
print(" arg 6) transposition: 0")
|
|
|
print(" arg 7) f0 method: harvest (pm, harvest, crepe, crepe-tiny, hybrid[x,x,x,x], mangio-crepe, mangio-crepe-tiny)")
|
|
|
print(" arg 8) crepe hop length: 160")
|
|
|
print(" arg 9) harvest median filter radius: 3 (0-7)")
|
|
|
print(" arg 10) post resample rate: 0")
|
|
|
print(" arg 11) mix volume envelope: 1")
|
|
|
print(" arg 12) feature index ratio: 0.78 (0-1)")
|
|
|
print(" arg 13) Voiceless Consonant Protection (Less Artifact): 0.33 (Smaller number = more protection. 0.50 means Dont Use.) \n")
|
|
|
print("Example: mi-test.pth saudio/Sidney.wav myTest.wav logs/mi-test/added_index.index 0 -2 harvest 160 3 0 1 0.95 0.33")
|
|
|
elif cli_current_page == "PRE-PROCESS":
|
|
|
print(" arg 1) Model folder name in ./logs: mi-test")
|
|
|
print(" arg 2) Trainset directory: mydataset (or) E:\\my-data-set")
|
|
|
print(" arg 3) Sample rate: 40k (32k, 40k, 48k)")
|
|
|
print(" arg 4) Number of CPU threads to use: 8 \n")
|
|
|
print("Example: mi-test mydataset 40k 24")
|
|
|
elif cli_current_page == "EXTRACT-FEATURE":
|
|
|
print(" arg 1) Model folder name in ./logs: mi-test")
|
|
|
print(" arg 2) Gpu card slot: 0 (0-1-2 if using 3 GPUs)")
|
|
|
print(" arg 3) Number of CPU threads to use: 8")
|
|
|
print(" arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)")
|
|
|
print(" arg 5) f0 Method: harvest (pm, harvest, dio, crepe)")
|
|
|
print(" arg 6) Crepe hop length: 128")
|
|
|
print(" arg 7) Version for pre-trained models: v2 (use either v1 or v2)\n")
|
|
|
print("Example: mi-test 0 24 1 harvest 128 v2")
|
|
|
elif cli_current_page == "TRAIN":
|
|
|
print(" arg 1) Model folder name in ./logs: mi-test")
|
|
|
print(" arg 2) Sample rate: 40k (32k, 40k, 48k)")
|
|
|
print(" arg 3) Has Pitch Guidance?: 1 (0 for no, 1 for yes)")
|
|
|
print(" arg 4) speaker id: 0")
|
|
|
print(" arg 5) Save epoch iteration: 50")
|
|
|
print(" arg 6) Total epochs: 10000")
|
|
|
print(" arg 7) Batch size: 8")
|
|
|
print(" arg 8) Gpu card slot: 0 (0-1-2 if using 3 GPUs)")
|
|
|
print(" arg 9) Save only the latest checkpoint: 0 (0 for no, 1 for yes)")
|
|
|
print(" arg 10) Whether to cache training set to vram: 0 (0 for no, 1 for yes)")
|
|
|
print(" arg 11) Save extracted small model every generation?: 0 (0 for no, 1 for yes)")
|
|
|
print(" arg 12) Model architecture version: v2 (use either v1 or v2)\n")
|
|
|
print("Example: mi-test 40k 1 0 50 10000 8 0 0 0 0 v2")
|
|
|
elif cli_current_page == "TRAIN-FEATURE":
|
|
|
print(" arg 1) Model folder name in ./logs: mi-test")
|
|
|
print(" arg 2) Model architecture version: v2 (use either v1 or v2)\n")
|
|
|
print("Example: mi-test v2")
|
|
|
elif cli_current_page == "EXTRACT-MODEL":
|
|
|
print(" arg 1) Model Path: logs/mi-test/G_168000.pth")
|
|
|
print(" arg 2) Model save name: MyModel")
|
|
|
print(" arg 3) Sample rate: 40k (32k, 40k, 48k)")
|
|
|
print(" arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)")
|
|
|
print(' arg 5) Model information: "My Model"')
|
|
|
print(" arg 6) Model architecture version: v2 (use either v1 or v2)\n")
|
|
|
print('Example: logs/mi-test/G_168000.pth MyModel 40k 1 "Created by Cole Mangio" v2')
|
|
|
print("")
|
|
|
|
|
|
def change_page(page):
|
|
|
global cli_current_page
|
|
|
cli_current_page = page
|
|
|
return 0
|
|
|
|
|
|
def execute_command(com):
|
|
|
if com == "go home":
|
|
|
return change_page("HOME")
|
|
|
elif com == "go infer":
|
|
|
return change_page("INFER")
|
|
|
elif com == "go pre-process":
|
|
|
return change_page("PRE-PROCESS")
|
|
|
elif com == "go extract-feature":
|
|
|
return change_page("EXTRACT-FEATURE")
|
|
|
elif com == "go train":
|
|
|
return change_page("TRAIN")
|
|
|
elif com == "go train-feature":
|
|
|
return change_page("TRAIN-FEATURE")
|
|
|
elif com == "go extract-model":
|
|
|
return change_page("EXTRACT-MODEL")
|
|
|
else:
|
|
|
if com[:3] == "go ":
|
|
|
print("page '%s' does not exist!" % com[3:])
|
|
|
return 0
|
|
|
|
|
|
if cli_current_page == "INFER":
|
|
|
cli_infer(com)
|
|
|
elif cli_current_page == "PRE-PROCESS":
|
|
|
cli_pre_process(com)
|
|
|
elif cli_current_page == "EXTRACT-FEATURE":
|
|
|
cli_extract_feature(com)
|
|
|
elif cli_current_page == "TRAIN":
|
|
|
cli_train(com)
|
|
|
elif cli_current_page == "TRAIN-FEATURE":
|
|
|
cli_train_feature(com)
|
|
|
elif cli_current_page == "EXTRACT-MODEL":
|
|
|
cli_extract_model(com)
|
|
|
|
|
|
def cli_navigation_loop():
|
|
|
while True:
|
|
|
print("You are currently in '%s':" % cli_current_page)
|
|
|
print_page_details()
|
|
|
command = input("%s: " % cli_current_page)
|
|
|
try:
|
|
|
execute_command(command)
|
|
|
except:
|
|
|
print(traceback.format_exc())
|
|
|
|
|
|
if(config.is_cli):
|
|
|
print("\n\nMangio-RVC-Fork v2 CLI App!\n")
|
|
|
print("Welcome to the CLI version of RVC. Please read the documentation on https://github.com/Mangio621/Mangio-RVC-Fork (README.MD) to understand how to use this app.\n")
|
|
|
cli_navigation_loop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_presets():
|
|
|
data = None
|
|
|
with open('../inference-presets.json', 'r') as file:
|
|
|
data = json.load(file)
|
|
|
preset_names = []
|
|
|
for preset in data['presets']:
|
|
|
preset_names.append(preset['name'])
|
|
|
|
|
|
return preset_names
|
|
|
|
|
|
def change_choices2():
|
|
|
audio_files=[]
|
|
|
for filename in os.listdir("./audios"):
|
|
|
if filename.endswith(('.wav','.mp3')):
|
|
|
audio_files.append(os.path.join('./audios',filename))
|
|
|
return {"choices": sorted(audio_files), "__type__": "update"}, {"__type__": "update"}
|
|
|
|
|
|
audio_files=[]
|
|
|
for filename in os.listdir("./audios"):
|
|
|
if filename.endswith(('.wav','.mp3')):
|
|
|
audio_files.append(os.path.join('./audios',filename))
|
|
|
|
|
|
def get_index():
|
|
|
if check_for_name() != '':
|
|
|
chosen_model=sorted(names)[0].split(".")[0]
|
|
|
logs_path="./logs/"+chosen_model
|
|
|
if os.path.exists(logs_path):
|
|
|
for file in os.listdir(logs_path):
|
|
|
if file.endswith(".index"):
|
|
|
return os.path.join(logs_path, file)
|
|
|
return ''
|
|
|
else:
|
|
|
return ''
|
|
|
|
|
|
def get_indexes():
|
|
|
indexes_list=[]
|
|
|
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
|
|
for filename in filenames:
|
|
|
if filename.endswith(".index"):
|
|
|
indexes_list.append(os.path.join(dirpath,filename))
|
|
|
if len(indexes_list) > 0:
|
|
|
return indexes_list
|
|
|
else:
|
|
|
return ''
|
|
|
|
|
|
def get_name():
|
|
|
if len(audio_files) > 0:
|
|
|
return sorted(audio_files)[0]
|
|
|
else:
|
|
|
return ''
|
|
|
|
|
|
def save_to_wav(record_button):
|
|
|
if record_button is None:
|
|
|
pass
|
|
|
else:
|
|
|
path_to_file=record_button
|
|
|
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
|
|
new_path='./audios/'+new_name
|
|
|
shutil.move(path_to_file,new_path)
|
|
|
return new_path
|
|
|
|
|
|
def save_to_wav2(dropbox):
|
|
|
file_path=dropbox.name
|
|
|
shutil.move(file_path,'./audios')
|
|
|
return os.path.join('./audios',os.path.basename(file_path))
|
|
|
|
|
|
def match_index(sid0):
|
|
|
folder=sid0.split(".")[0]
|
|
|
parent_dir="./logs/"+folder
|
|
|
if os.path.exists(parent_dir):
|
|
|
for filename in os.listdir(parent_dir):
|
|
|
if filename.endswith(".index"):
|
|
|
index_path=os.path.join(parent_dir,filename)
|
|
|
return index_path
|
|
|
else:
|
|
|
return ''
|
|
|
|
|
|
def check_for_name():
|
|
|
if len(names) > 0:
|
|
|
return sorted(names)[0]
|
|
|
else:
|
|
|
return ''
|
|
|
|
|
|
def download_from_url(url, model):
|
|
|
if url == '':
|
|
|
return "URL cannot be left empty."
|
|
|
if model =='':
|
|
|
return "You need to name your model. For example: My-Model"
|
|
|
url = url.strip()
|
|
|
zip_dirs = ["zips", "unzips"]
|
|
|
for directory in zip_dirs:
|
|
|
if os.path.exists(directory):
|
|
|
shutil.rmtree(directory)
|
|
|
os.makedirs("zips", exist_ok=True)
|
|
|
os.makedirs("unzips", exist_ok=True)
|
|
|
zipfile = model + '.zip'
|
|
|
zipfile_path = './zips/' + zipfile
|
|
|
try:
|
|
|
if "drive.google.com" in url:
|
|
|
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
|
|
elif "mega.nz" in url:
|
|
|
m = Mega()
|
|
|
m.download_url(url, './zips')
|
|
|
else:
|
|
|
subprocess.run(["wget", url, "-O", zipfile_path])
|
|
|
for filename in os.listdir("./zips"):
|
|
|
if filename.endswith(".zip"):
|
|
|
zipfile_path = os.path.join("./zips/",filename)
|
|
|
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
|
|
else:
|
|
|
return "No zipfile found."
|
|
|
for root, dirs, files in os.walk('./unzips'):
|
|
|
for file in files:
|
|
|
file_path = os.path.join(root, file)
|
|
|
if file.endswith(".index"):
|
|
|
os.mkdir(f'./logs/{model}')
|
|
|
shutil.copy2(file_path,f'./logs/{model}')
|
|
|
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
|
|
shutil.copy(file_path,f'./weights/{model}.pth')
|
|
|
shutil.rmtree("zips")
|
|
|
shutil.rmtree("unzips")
|
|
|
return "Success."
|
|
|
except:
|
|
|
return "There's been an error."
|
|
|
def success_message(face):
|
|
|
return f'{face.name} has been uploaded.', 'None'
|
|
|
def mouth(size, face, voice, faces):
|
|
|
if size == 'Half':
|
|
|
size = 2
|
|
|
else:
|
|
|
size = 1
|
|
|
if faces == 'None':
|
|
|
character = face.name
|
|
|
else:
|
|
|
if faces == 'Ben Shapiro':
|
|
|
character = '/content/wav2lip-HD/inputs/ben-shapiro-10.mp4'
|
|
|
elif faces == 'Andrew Tate':
|
|
|
character = '/content/wav2lip-HD/inputs/tate-7.mp4'
|
|
|
command = "python inference.py " \
|
|
|
"--checkpoint_path checkpoints/wav2lip.pth " \
|
|
|
f"--face {character} " \
|
|
|
f"--audio {voice} " \
|
|
|
"--pads 0 20 0 0 " \
|
|
|
"--outfile /content/wav2lip-HD/outputs/result.mp4 " \
|
|
|
"--fps 24 " \
|
|
|
f"--resize_factor {size}"
|
|
|
process = subprocess.Popen(command, shell=True, cwd='/content/wav2lip-HD/Wav2Lip-master')
|
|
|
stdout, stderr = process.communicate()
|
|
|
return '/content/wav2lip-HD/outputs/result.mp4', 'Animation completed.'
|
|
|
eleven_voices = ['Adam','Antoni','Josh','Arnold','Sam','Bella','Rachel','Domi','Elli']
|
|
|
eleven_voices_ids=['pNInz6obpgDQGcFmaJgB','ErXwobaYiN019PkySvjV','TxGEqnHWrfWFTfGW9XjX','VR6AewLTigWG4xSOukaG','yoZ06aMxZJJ28mfd3POQ','EXAVITQu4vr4xnSDxMaL','21m00Tcm4TlvDq8ikWAM','AZnzlk1XvdvUeBnXmlld','MF3mGyEYCl7XYWbV9V6O']
|
|
|
chosen_voice = dict(zip(eleven_voices, eleven_voices_ids))
|
|
|
def elevenTTS(xiapi, text, id, lang):
|
|
|
if xiapi!= '' and id !='':
|
|
|
choice = chosen_voice[id]
|
|
|
CHUNK_SIZE = 1024
|
|
|
url = f"https://api.elevenlabs.io/v1/text-to-speech/{choice}"
|
|
|
headers = {
|
|
|
"Accept": "audio/mpeg",
|
|
|
"Content-Type": "application/json",
|
|
|
"xi-api-key": xiapi
|
|
|
}
|
|
|
if lang == 'en':
|
|
|
data = {
|
|
|
"text": text,
|
|
|
"model_id": "eleven_monolingual_v1",
|
|
|
"voice_settings": {
|
|
|
"stability": 0.5,
|
|
|
"similarity_boost": 0.5
|
|
|
}
|
|
|
}
|
|
|
else:
|
|
|
data = {
|
|
|
"text": text,
|
|
|
"model_id": "eleven_multilingual_v1",
|
|
|
"voice_settings": {
|
|
|
"stability": 0.5,
|
|
|
"similarity_boost": 0.5
|
|
|
}
|
|
|
}
|
|
|
|
|
|
response = requests.post(url, json=data, headers=headers)
|
|
|
with open('./temp_eleven.mp3', 'wb') as f:
|
|
|
for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
|
|
|
if chunk:
|
|
|
f.write(chunk)
|
|
|
aud_path = save_to_wav('./temp_eleven.mp3')
|
|
|
return aud_path, aud_path
|
|
|
else:
|
|
|
tts = gTTS(text, lang=lang)
|
|
|
tts.save('./temp_gTTS.mp3')
|
|
|
aud_path = save_to_wav('./temp_gTTS.mp3')
|
|
|
return aud_path, aud_path
|
|
|
|
|
|
def upload_to_dataset(files, dir):
|
|
|
if dir == '':
|
|
|
dir = './dataset'
|
|
|
if not os.path.exists(dir):
|
|
|
os.makedirs(dir)
|
|
|
count = 0
|
|
|
for file in files:
|
|
|
path=file.name
|
|
|
shutil.copy2(path,dir)
|
|
|
count += 1
|
|
|
return f' {count} files uploaded to {dir}.'
|
|
|
|
|
|
def zip_downloader(model):
|
|
|
if not os.path.exists(f'./weights/{model}.pth'):
|
|
|
return {"__type__": "update"}, f'Make sure the Voice Name is correct. I could not find {model}.pth'
|
|
|
index_found = False
|
|
|
for file in os.listdir(f'./logs/{model}'):
|
|
|
if file.endswith('.index') and 'added' in file:
|
|
|
log_file = file
|
|
|
index_found = True
|
|
|
if index_found:
|
|
|
return [f'./weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
|
|
|
else:
|
|
|
return f'./weights/{model}.pth', "Could not find Index file."
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Base()) as app:
|
|
|
with gr.Tabs():
|
|
|
with gr.TabItem("Inference"):
|
|
|
gr.HTML("<h1> Easy GUI v2 (rejekts) - adapted to Mangio-RVC-Fork 💻 </h1>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
sid0 = gr.Dropdown(label="1.Choose your Model.", choices=sorted(names), value=check_for_name())
|
|
|
refresh_button = gr.Button("Refresh", variant="primary")
|
|
|
if check_for_name() != '':
|
|
|
get_vc(sorted(names)[0])
|
|
|
vc_transform0 = gr.Number(label="Optional: You can change the pitch here or leave it at 0.", value=0)
|
|
|
|
|
|
spk_item = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=2333,
|
|
|
step=1,
|
|
|
label=i18n("请选择说话人id"),
|
|
|
value=0,
|
|
|
visible=False,
|
|
|
interactive=True,
|
|
|
)
|
|
|
|
|
|
sid0.change(
|
|
|
fn=get_vc,
|
|
|
inputs=[sid0],
|
|
|
outputs=[spk_item],
|
|
|
)
|
|
|
but0 = gr.Button("Convert", variant="primary")
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
with gr.Row():
|
|
|
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
|
|
with gr.Row():
|
|
|
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
|
|
with gr.Row():
|
|
|
input_audio0 = gr.Dropdown(
|
|
|
label="2.Choose your audio.",
|
|
|
value="./audios/someguy.mp3",
|
|
|
choices=audio_files
|
|
|
)
|
|
|
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0])
|
|
|
dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio0])
|
|
|
refresh_button2 = gr.Button("Refresh", variant="primary", size='sm')
|
|
|
record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[input_audio0])
|
|
|
record_button.change(fn=change_choices2, inputs=[], outputs=[input_audio0])
|
|
|
with gr.Row():
|
|
|
with gr.Accordion('Text To Speech', open=False):
|
|
|
with gr.Column():
|
|
|
lang = gr.Radio(label='Chinese & Japanese do not work with ElevenLabs currently.',choices=['en','es','fr','pt','zh-CN','de','hi','ja'], value='en')
|
|
|
api_box = gr.Textbox(label="Enter your API Key for ElevenLabs, or leave empty to use GoogleTTS", value='')
|
|
|
elevenid=gr.Dropdown(label="Voice:", choices=eleven_voices)
|
|
|
with gr.Column():
|
|
|
tfs = gr.Textbox(label="Input your Text", interactive=True, value="This is a test.")
|
|
|
tts_button = gr.Button(value="Speak")
|
|
|
tts_button.click(fn=elevenTTS, inputs=[api_box,tfs, elevenid, lang], outputs=[record_button, input_audio0])
|
|
|
with gr.Row():
|
|
|
with gr.Accordion('Wav2Lip', open=False):
|
|
|
with gr.Row():
|
|
|
size = gr.Radio(label='Resolution:',choices=['Half','Full'])
|
|
|
face = gr.UploadButton("Upload A Character",type='file')
|
|
|
faces = gr.Dropdown(label="OR Choose one:", choices=['None','Ben Shapiro','Andrew Tate'])
|
|
|
with gr.Row():
|
|
|
preview = gr.Textbox(label="Status:",interactive=False)
|
|
|
face.upload(fn=success_message,inputs=[face], outputs=[preview, faces])
|
|
|
with gr.Row():
|
|
|
animation = gr.Video(type='filepath')
|
|
|
refresh_button2.click(fn=change_choices2, inputs=[], outputs=[input_audio0, animation])
|
|
|
with gr.Row():
|
|
|
animate_button = gr.Button('Animate')
|
|
|
|
|
|
with gr.Column():
|
|
|
with gr.Accordion("Index Settings", open=False):
|
|
|
file_index1 = gr.Dropdown(
|
|
|
label="3. Path to your added.index file (if it didn't automatically find it.)",
|
|
|
choices=get_indexes(),
|
|
|
value=get_index(),
|
|
|
interactive=True,
|
|
|
)
|
|
|
sid0.change(fn=match_index, inputs=[sid0],outputs=[file_index1])
|
|
|
refresh_button.click(
|
|
|
fn=change_choices, inputs=[], outputs=[sid0, file_index1]
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
index_rate1 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=1,
|
|
|
label=i18n("检索特征占比"),
|
|
|
value=0.66,
|
|
|
interactive=True,
|
|
|
)
|
|
|
vc_output2 = gr.Audio(label="Output Audio (Click on the Three Dots in the Right Corner to Download)",type='filepath')
|
|
|
animate_button.click(fn=mouth, inputs=[size, face, vc_output2, faces], outputs=[animation, preview])
|
|
|
with gr.Accordion("Advanced Settings", open=False):
|
|
|
f0method0 = gr.Radio(
|
|
|
label="Optional: Change the Pitch Extraction Algorithm.",
|
|
|
choices=["pm", "dio", "mangio-crepe-tiny", "crepe-tiny", "crepe", "mangio-crepe", "harvest"],
|
|
|
value="mangio-crepe",
|
|
|
interactive=True,
|
|
|
)
|
|
|
crepe_hop_length = gr.Slider(
|
|
|
minimum=1,
|
|
|
maximum=512,
|
|
|
step=1,
|
|
|
label="Mangio-Crepe Hop Length. Higher numbers will reduce the chance of extreme pitch changes but lower numbers will increase accuracy.",
|
|
|
value=120,
|
|
|
interactive=True
|
|
|
)
|
|
|
filter_radius0 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=7,
|
|
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
|
|
value=3,
|
|
|
step=1,
|
|
|
interactive=True,
|
|
|
)
|
|
|
resample_sr0 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=48000,
|
|
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
|
|
value=0,
|
|
|
step=1,
|
|
|
interactive=True,
|
|
|
visible=False
|
|
|
)
|
|
|
rms_mix_rate0 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=1,
|
|
|
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
|
|
value=0.21,
|
|
|
interactive=True,
|
|
|
)
|
|
|
protect0 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=0.5,
|
|
|
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
|
|
|
value=0.33,
|
|
|
step=0.01,
|
|
|
interactive=True,
|
|
|
)
|
|
|
with gr.Row():
|
|
|
vc_output1 = gr.Textbox("")
|
|
|
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
|
|
|
|
|
but0.click(
|
|
|
vc_single,
|
|
|
[
|
|
|
spk_item,
|
|
|
input_audio0,
|
|
|
vc_transform0,
|
|
|
f0_file,
|
|
|
f0method0,
|
|
|
file_index1,
|
|
|
|
|
|
|
|
|
index_rate1,
|
|
|
filter_radius0,
|
|
|
resample_sr0,
|
|
|
rms_mix_rate0,
|
|
|
protect0,
|
|
|
crepe_hop_length
|
|
|
],
|
|
|
[vc_output1, vc_output2],
|
|
|
)
|
|
|
|
|
|
with gr.Accordion("Batch Conversion",open=False):
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
vc_transform1 = gr.Number(
|
|
|
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
|
|
)
|
|
|
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
|
|
f0method1 = gr.Radio(
|
|
|
label=i18n(
|
|
|
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
|
|
),
|
|
|
choices=["pm", "harvest", "crepe"],
|
|
|
value="pm",
|
|
|
interactive=True,
|
|
|
)
|
|
|
filter_radius1 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=7,
|
|
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
|
|
value=3,
|
|
|
step=1,
|
|
|
interactive=True,
|
|
|
)
|
|
|
with gr.Column():
|
|
|
file_index3 = gr.Textbox(
|
|
|
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
|
|
value="",
|
|
|
interactive=True,
|
|
|
)
|
|
|
file_index4 = gr.Dropdown(
|
|
|
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
|
|
choices=sorted(index_paths),
|
|
|
interactive=True,
|
|
|
)
|
|
|
refresh_button.click(
|
|
|
fn=lambda: change_choices()[1],
|
|
|
inputs=[],
|
|
|
outputs=file_index4,
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
index_rate2 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=1,
|
|
|
label=i18n("检索特征占比"),
|
|
|
value=1,
|
|
|
interactive=True,
|
|
|
)
|
|
|
with gr.Column():
|
|
|
resample_sr1 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=48000,
|
|
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
|
|
value=0,
|
|
|
step=1,
|
|
|
interactive=True,
|
|
|
)
|
|
|
rms_mix_rate1 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=1,
|
|
|
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
|
|
value=1,
|
|
|
interactive=True,
|
|
|
)
|
|
|
protect1 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=0.5,
|
|
|
label=i18n(
|
|
|
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
|
|
),
|
|
|
value=0.33,
|
|
|
step=0.01,
|
|
|
interactive=True,
|
|
|
)
|
|
|
with gr.Column():
|
|
|
dir_input = gr.Textbox(
|
|
|
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
|
|
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
|
|
)
|
|
|
inputs = gr.File(
|
|
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
|
|
)
|
|
|
with gr.Row():
|
|
|
format1 = gr.Radio(
|
|
|
label=i18n("导出文件格式"),
|
|
|
choices=["wav", "flac", "mp3", "m4a"],
|
|
|
value="flac",
|
|
|
interactive=True,
|
|
|
)
|
|
|
but1 = gr.Button(i18n("转换"), variant="primary")
|
|
|
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
|
|
but1.click(
|
|
|
vc_multi,
|
|
|
[
|
|
|
spk_item,
|
|
|
dir_input,
|
|
|
opt_input,
|
|
|
inputs,
|
|
|
vc_transform1,
|
|
|
f0method1,
|
|
|
file_index3,
|
|
|
file_index4,
|
|
|
|
|
|
index_rate2,
|
|
|
filter_radius1,
|
|
|
resample_sr1,
|
|
|
rms_mix_rate1,
|
|
|
protect1,
|
|
|
format1,
|
|
|
crepe_hop_length,
|
|
|
],
|
|
|
[vc_output3],
|
|
|
)
|
|
|
but1.click(fn=lambda: easy_uploader.clear())
|
|
|
with gr.TabItem("Download Model"):
|
|
|
with gr.Row():
|
|
|
url=gr.Textbox(label="Enter the URL to the Model:")
|
|
|
with gr.Row():
|
|
|
model = gr.Textbox(label="Name your model:")
|
|
|
download_button=gr.Button("Download")
|
|
|
with gr.Row():
|
|
|
status_bar=gr.Textbox(label="")
|
|
|
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
|
|
with gr.Row():
|
|
|
gr.Markdown(
|
|
|
"""
|
|
|
Original RVC:https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
|
|
|
Mangio's RVC Fork:https://github.com/Mangio621/Mangio-RVC-Fork
|
|
|
❤️ If you like the EasyGUI, help me keep it.❤️
|
|
|
https://paypal.me/lesantillan
|
|
|
"""
|
|
|
)
|
|
|
|
|
|
with gr.TabItem("Train", visible=False):
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
exp_dir1 = gr.Textbox(label="Voice Name:", value="My-Voice")
|
|
|
sr2 = gr.Radio(
|
|
|
label=i18n("目标采样率"),
|
|
|
choices=["40k", "48k"],
|
|
|
value="40k",
|
|
|
interactive=True,
|
|
|
visible=False
|
|
|
)
|
|
|
if_f0_3 = gr.Radio(
|
|
|
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
|
|
choices=[True, False],
|
|
|
value=True,
|
|
|
interactive=True,
|
|
|
visible=False
|
|
|
)
|
|
|
version19 = gr.Radio(
|
|
|
label="RVC version",
|
|
|
choices=["v1", "v2"],
|
|
|
value="v2",
|
|
|
interactive=True,
|
|
|
visible=False,
|
|
|
)
|
|
|
np7 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=config.n_cpu,
|
|
|
step=1,
|
|
|
label="# of CPUs to use (Leave it unless you know what you're doing!)",
|
|
|
value=config.n_cpu,
|
|
|
interactive=True,
|
|
|
visible=False
|
|
|
)
|
|
|
trainset_dir4 = gr.Textbox(label="Path to your dataset (audios, not zip):", value="./dataset")
|
|
|
easy_uploader = gr.Files(label='OR Drop your audios here. They will be uploaded in your dataset path above.',file_types=['audio'])
|
|
|
but1 = gr.Button("1.Process The Dataset", variant="primary")
|
|
|
info1 = gr.Textbox(label="Status (wait until it says 'end preprocess'):", value="")
|
|
|
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1])
|
|
|
but1.click(
|
|
|
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
|
|
)
|
|
|
with gr.Column():
|
|
|
spk_id5 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=4,
|
|
|
step=1,
|
|
|
label=i18n("请指定说话人id"),
|
|
|
value=0,
|
|
|
interactive=True,
|
|
|
visible=False
|
|
|
)
|
|
|
with gr.Accordion('GPU Settings', open=False, visible=False):
|
|
|
gpus6 = gr.Textbox(
|
|
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
|
|
value=gpus,
|
|
|
interactive=True,
|
|
|
visible=False
|
|
|
)
|
|
|
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
|
|
|
f0method8 = gr.Radio(
|
|
|
label=i18n(
|
|
|
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
|
|
|
),
|
|
|
choices=["harvest","crepe", "mangio-crepe"],
|
|
|
value="mangio-crepe",
|
|
|
interactive=True,
|
|
|
)
|
|
|
extraction_crepe_hop_length = gr.Slider(
|
|
|
minimum=1,
|
|
|
maximum=512,
|
|
|
step=1,
|
|
|
label=i18n("crepe_hop_length"),
|
|
|
value=128,
|
|
|
interactive=True
|
|
|
)
|
|
|
but2 = gr.Button("2.Pitch Extraction", variant="primary")
|
|
|
info2 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=8)
|
|
|
but2.click(
|
|
|
extract_f0_feature,
|
|
|
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
|
|
|
[info2],
|
|
|
)
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
total_epoch11 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=10000,
|
|
|
step=10,
|
|
|
label="Total # of training epochs (IF you choose a value too high, your model will sound horribly overtrained.):",
|
|
|
value=250,
|
|
|
interactive=True,
|
|
|
)
|
|
|
but3 = gr.Button("3.Train Model", variant="primary")
|
|
|
but4 = gr.Button("4.Train Index", variant="primary")
|
|
|
info3 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=10)
|
|
|
with gr.Accordion("Training Preferences (You can leave these as they are)", open=False):
|
|
|
|
|
|
with gr.Column():
|
|
|
save_epoch10 = gr.Slider(
|
|
|
minimum=0,
|
|
|
maximum=100,
|
|
|
step=5,
|
|
|
label="Backup every # of epochs:",
|
|
|
value=25,
|
|
|
interactive=True,
|
|
|
)
|
|
|
batch_size12 = gr.Slider(
|
|
|
minimum=1,
|
|
|
maximum=40,
|
|
|
step=1,
|
|
|
label="Batch Size (LEAVE IT unless you know what you're doing!):",
|
|
|
value=default_batch_size,
|
|
|
interactive=True,
|
|
|
)
|
|
|
if_save_latest13 = gr.Radio(
|
|
|
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
|
|
choices=[i18n("是"), i18n("否")],
|
|
|
value=i18n("是"),
|
|
|
interactive=True,
|
|
|
)
|
|
|
if_cache_gpu17 = gr.Radio(
|
|
|
label=i18n(
|
|
|
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
|
|
),
|
|
|
choices=[i18n("是"), i18n("否")],
|
|
|
value=i18n("否"),
|
|
|
interactive=True,
|
|
|
)
|
|
|
if_save_every_weights18 = gr.Radio(
|
|
|
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
|
|
choices=[i18n("是"), i18n("否")],
|
|
|
value=i18n("是"),
|
|
|
interactive=True,
|
|
|
)
|
|
|
zip_model = gr.Button('5.Download Model')
|
|
|
zipped_model = gr.Files(label='Your Model and Index file can be downloaded here:')
|
|
|
zip_model.click(fn=zip_downloader, inputs=[exp_dir1], outputs=[zipped_model, info3])
|
|
|
with gr.Group():
|
|
|
with gr.Accordion("Base Model Locations:", open=False, visible=False):
|
|
|
pretrained_G14 = gr.Textbox(
|
|
|
label=i18n("加载预训练底模G路径"),
|
|
|
value="pretrained_v2/f0G40k.pth",
|
|
|
interactive=True,
|
|
|
)
|
|
|
pretrained_D15 = gr.Textbox(
|
|
|
label=i18n("加载预训练底模D路径"),
|
|
|
value="pretrained_v2/f0D40k.pth",
|
|
|
interactive=True,
|
|
|
)
|
|
|
gpus16 = gr.Textbox(
|
|
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
|
|
value=gpus,
|
|
|
interactive=True,
|
|
|
)
|
|
|
sr2.change(
|
|
|
change_sr2,
|
|
|
[sr2, if_f0_3, version19],
|
|
|
[pretrained_G14, pretrained_D15, version19],
|
|
|
)
|
|
|
version19.change(
|
|
|
change_version19,
|
|
|
[sr2, if_f0_3, version19],
|
|
|
[pretrained_G14, pretrained_D15],
|
|
|
)
|
|
|
if_f0_3.change(
|
|
|
change_f0,
|
|
|
[if_f0_3, sr2, version19],
|
|
|
[f0method8, pretrained_G14, pretrained_D15],
|
|
|
)
|
|
|
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
|
|
but3.click(
|
|
|
click_train,
|
|
|
[
|
|
|
exp_dir1,
|
|
|
sr2,
|
|
|
if_f0_3,
|
|
|
spk_id5,
|
|
|
save_epoch10,
|
|
|
total_epoch11,
|
|
|
batch_size12,
|
|
|
if_save_latest13,
|
|
|
pretrained_G14,
|
|
|
pretrained_D15,
|
|
|
gpus16,
|
|
|
if_cache_gpu17,
|
|
|
if_save_every_weights18,
|
|
|
version19,
|
|
|
],
|
|
|
info3,
|
|
|
)
|
|
|
but4.click(train_index, [exp_dir1, version19], info3)
|
|
|
but5.click(
|
|
|
train1key,
|
|
|
[
|
|
|
exp_dir1,
|
|
|
sr2,
|
|
|
if_f0_3,
|
|
|
trainset_dir4,
|
|
|
spk_id5,
|
|
|
np7,
|
|
|
f0method8,
|
|
|
save_epoch10,
|
|
|
total_epoch11,
|
|
|
batch_size12,
|
|
|
if_save_latest13,
|
|
|
pretrained_G14,
|
|
|
pretrained_D15,
|
|
|
gpus16,
|
|
|
if_cache_gpu17,
|
|
|
if_save_every_weights18,
|
|
|
version19,
|
|
|
extraction_crepe_hop_length
|
|
|
],
|
|
|
info3,
|
|
|
)
|
|
|
|
|
|
|
|
|
try:
|
|
|
if tab_faq == "常见问题解答":
|
|
|
with open("docs/faq.md", "r", encoding="utf8") as f:
|
|
|
info = f.read()
|
|
|
else:
|
|
|
with open("docs/faq_en.md", "r", encoding="utf8") as f:
|
|
|
info = f.read()
|
|
|
gr.Markdown(value=info)
|
|
|
except:
|
|
|
gr.Markdown("")
|
|
|
|
|
|
|
|
|
|
|
|
def save_preset(preset_name,sid0,vc_transform,input_audio,f0method,crepe_hop_length,filter_radius,file_index1,file_index2,index_rate,resample_sr,rms_mix_rate,protect,f0_file):
|
|
|
data = None
|
|
|
with open('../inference-presets.json', 'r') as file:
|
|
|
data = json.load(file)
|
|
|
preset_json = {
|
|
|
'name': preset_name,
|
|
|
'model': sid0,
|
|
|
'transpose': vc_transform,
|
|
|
'audio_file': input_audio,
|
|
|
'f0_method': f0method,
|
|
|
'crepe_hop_length': crepe_hop_length,
|
|
|
'median_filtering': filter_radius,
|
|
|
'feature_path': file_index1,
|
|
|
'auto_feature_path': file_index2,
|
|
|
'search_feature_ratio': index_rate,
|
|
|
'resample': resample_sr,
|
|
|
'volume_envelope': rms_mix_rate,
|
|
|
'protect_voiceless': protect,
|
|
|
'f0_file_path': f0_file
|
|
|
}
|
|
|
data['presets'].append(preset_json)
|
|
|
with open('../inference-presets.json', 'w') as file:
|
|
|
json.dump(data, file)
|
|
|
file.flush()
|
|
|
print("Saved Preset %s into inference-presets.json!" % preset_name)
|
|
|
|
|
|
|
|
|
def on_preset_changed(preset_name):
|
|
|
print("Changed Preset to %s!" % preset_name)
|
|
|
data = None
|
|
|
with open('../inference-presets.json', 'r') as file:
|
|
|
data = json.load(file)
|
|
|
|
|
|
print("Searching for " + preset_name)
|
|
|
returning_preset = None
|
|
|
for preset in data['presets']:
|
|
|
if(preset['name'] == preset_name):
|
|
|
print("Found a preset")
|
|
|
returning_preset = preset
|
|
|
|
|
|
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if config.iscolab or config.paperspace:
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
|
|
else:
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
|
|
server_name="0.0.0.0",
|
|
|
inbrowser=not config.noautoopen,
|
|
|
server_port=config.listen_port,
|
|
|
quiet=True,
|
|
|
)
|
|
|
|