| 
							 | 
						from infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
 | 
					
					
						
						| 
							 | 
						import torch
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__":
 | 
					
					
						
						| 
							 | 
						    MoeVS = True  
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    ModelPath = "Shiroha/shiroha.pth"  
 | 
					
					
						
						| 
							 | 
						    ExportedPath = "model.onnx"  
 | 
					
					
						
						| 
							 | 
						    hidden_channels = 256  
 | 
					
					
						
						| 
							 | 
						    cpt = torch.load(ModelPath, map_location="cpu")
 | 
					
					
						
						| 
							 | 
						    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  
 | 
					
					
						
						| 
							 | 
						    print(*cpt["config"])
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    test_phone = torch.rand(1, 200, hidden_channels)  
 | 
					
					
						
						| 
							 | 
						    test_phone_lengths = torch.tensor([200]).long()  
 | 
					
					
						
						| 
							 | 
						    test_pitch = torch.randint(size=(1, 200), low=5, high=255)  
 | 
					
					
						
						| 
							 | 
						    test_pitchf = torch.rand(1, 200)  
 | 
					
					
						
						| 
							 | 
						    test_ds = torch.LongTensor([0])  
 | 
					
					
						
						| 
							 | 
						    test_rnd = torch.rand(1, 192, 200)  
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    device = "cpu"  
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    net_g = SynthesizerTrnMsNSFsidM(
 | 
					
					
						
						| 
							 | 
						        *cpt["config"], is_half=False
 | 
					
					
						
						| 
							 | 
						    )  
 | 
					
					
						
						| 
							 | 
						    net_g.load_state_dict(cpt["weight"], strict=False)
 | 
					
					
						
						| 
							 | 
						    input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
 | 
					
					
						
						| 
							 | 
						    output_names = [
 | 
					
					
						
						| 
							 | 
						        "audio",
 | 
					
					
						
						| 
							 | 
						    ]
 | 
					
					
						
						| 
							 | 
						    
 | 
					
					
						
						| 
							 | 
						    torch.onnx.export(
 | 
					
					
						
						| 
							 | 
						        net_g,
 | 
					
					
						
						| 
							 | 
						        (
 | 
					
					
						
						| 
							 | 
						            test_phone.to(device),
 | 
					
					
						
						| 
							 | 
						            test_phone_lengths.to(device),
 | 
					
					
						
						| 
							 | 
						            test_pitch.to(device),
 | 
					
					
						
						| 
							 | 
						            test_pitchf.to(device),
 | 
					
					
						
						| 
							 | 
						            test_ds.to(device),
 | 
					
					
						
						| 
							 | 
						            test_rnd.to(device),
 | 
					
					
						
						| 
							 | 
						        ),
 | 
					
					
						
						| 
							 | 
						        ExportedPath,
 | 
					
					
						
						| 
							 | 
						        dynamic_axes={
 | 
					
					
						
						| 
							 | 
						            "phone": [1],
 | 
					
					
						
						| 
							 | 
						            "pitch": [1],
 | 
					
					
						
						| 
							 | 
						            "pitchf": [1],
 | 
					
					
						
						| 
							 | 
						            "rnd": [2],
 | 
					
					
						
						| 
							 | 
						        },
 | 
					
					
						
						| 
							 | 
						        do_constant_folding=False,
 | 
					
					
						
						| 
							 | 
						        opset_version=16,
 | 
					
					
						
						| 
							 | 
						        verbose=False,
 | 
					
					
						
						| 
							 | 
						        input_names=input_names,
 | 
					
					
						
						| 
							 | 
						        output_names=output_names,
 | 
					
					
						
						| 
							 | 
						    )
 | 
					
					
						
						| 
							 | 
						
 |