Upload extract_f0_print.py with huggingface_hub
Browse files- extract_f0_print.py +411 -0
extract_f0_print.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, traceback, sys, parselmouth
|
2 |
+
|
3 |
+
now_dir = os.getcwd()
|
4 |
+
sys.path.append(now_dir)
|
5 |
+
from my_utils import load_audio
|
6 |
+
import pyworld
|
7 |
+
from scipy.io import wavfile
|
8 |
+
import numpy as np, logging
|
9 |
+
import torchcrepe # Fork Feature. Crepe algo for training and preprocess
|
10 |
+
import torch
|
11 |
+
from torch import Tensor # Fork Feature. Used for pitch prediction for torch crepe.
|
12 |
+
import scipy.signal as signal # Fork Feature hybrid inference
|
13 |
+
import tqdm
|
14 |
+
|
15 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
16 |
+
from multiprocessing import Process
|
17 |
+
|
18 |
+
exp_dir = sys.argv[1]
|
19 |
+
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
20 |
+
|
21 |
+
|
22 |
+
def printt(strr):
|
23 |
+
print(strr)
|
24 |
+
f.write("%s\n" % strr)
|
25 |
+
f.flush()
|
26 |
+
|
27 |
+
|
28 |
+
n_p = int(sys.argv[2])
|
29 |
+
f0method = sys.argv[3]
|
30 |
+
extraction_crepe_hop_length = 0
|
31 |
+
try:
|
32 |
+
extraction_crepe_hop_length = int(sys.argv[4])
|
33 |
+
except:
|
34 |
+
print("Temp Issue. echl is not being passed with argument!")
|
35 |
+
extraction_crepe_hop_length = 128
|
36 |
+
|
37 |
+
# print("EXTRACTION CREPE HOP LENGTH: " + str(extraction_crepe_hop_length))
|
38 |
+
# print("EXTRACTION CREPE HOP LENGTH TYPE: " + str(type(extraction_crepe_hop_length)))
|
39 |
+
|
40 |
+
|
41 |
+
class FeatureInput(object):
|
42 |
+
def __init__(self, samplerate=16000, hop_size=160):
|
43 |
+
self.fs = samplerate
|
44 |
+
self.hop = hop_size
|
45 |
+
|
46 |
+
self.f0_bin = 256
|
47 |
+
self.f0_max = 1100.0
|
48 |
+
self.f0_min = 50.0
|
49 |
+
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
50 |
+
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
51 |
+
|
52 |
+
# EXPERIMENTAL. PROBABLY BUGGY
|
53 |
+
def get_f0_hybrid_computation(
|
54 |
+
self,
|
55 |
+
methods_str,
|
56 |
+
x,
|
57 |
+
f0_min,
|
58 |
+
f0_max,
|
59 |
+
p_len,
|
60 |
+
crepe_hop_length,
|
61 |
+
time_step,
|
62 |
+
):
|
63 |
+
# Get various f0 methods from input to use in the computation stack
|
64 |
+
s = methods_str
|
65 |
+
s = s.split('hybrid')[1]
|
66 |
+
s = s.replace('[', '').replace(']', '')
|
67 |
+
methods = s.split('+')
|
68 |
+
f0_computation_stack = []
|
69 |
+
|
70 |
+
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
|
71 |
+
x = x.astype(np.float32)
|
72 |
+
x /= np.quantile(np.abs(x), 0.999)
|
73 |
+
# Get f0 calculations for all methods specified
|
74 |
+
for method in methods:
|
75 |
+
f0 = None
|
76 |
+
if method == "pm":
|
77 |
+
f0 = (
|
78 |
+
parselmouth.Sound(x, self.fs)
|
79 |
+
.to_pitch_ac(
|
80 |
+
time_step=time_step / 1000,
|
81 |
+
voicing_threshold=0.6,
|
82 |
+
pitch_floor=f0_min,
|
83 |
+
pitch_ceiling=f0_max,
|
84 |
+
)
|
85 |
+
.selected_array["frequency"]
|
86 |
+
)
|
87 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
88 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
89 |
+
f0 = np.pad(
|
90 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
91 |
+
)
|
92 |
+
elif method == "crepe":
|
93 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
94 |
+
torch_device_index = 0
|
95 |
+
torch_device = None
|
96 |
+
if torch.cuda.is_available():
|
97 |
+
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
|
98 |
+
elif torch.backends.mps.is_available():
|
99 |
+
torch_device = torch.device("mps")
|
100 |
+
else:
|
101 |
+
torch_device = torch.device("cpu")
|
102 |
+
model = "full"
|
103 |
+
batch_size = 512
|
104 |
+
# Compute pitch using first gpu
|
105 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
106 |
+
f0, pd = torchcrepe.predict(
|
107 |
+
audio,
|
108 |
+
self.fs,
|
109 |
+
160,
|
110 |
+
self.f0_min,
|
111 |
+
self.f0_max,
|
112 |
+
model,
|
113 |
+
batch_size=batch_size,
|
114 |
+
device=torch_device,
|
115 |
+
return_periodicity=True,
|
116 |
+
)
|
117 |
+
pd = torchcrepe.filter.median(pd, 3)
|
118 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
119 |
+
f0[pd < 0.1] = 0
|
120 |
+
f0 = f0[0].cpu().numpy()
|
121 |
+
f0 = f0[1:] # Get rid of extra first frame
|
122 |
+
elif method == "mangio-crepe":
|
123 |
+
# print("Performing crepe pitch extraction. (EXPERIMENTAL)")
|
124 |
+
# print("CREPE PITCH EXTRACTION HOP LENGTH: " + str(crepe_hop_length))
|
125 |
+
x = x.astype(np.float32)
|
126 |
+
x /= np.quantile(np.abs(x), 0.999)
|
127 |
+
torch_device_index = 0
|
128 |
+
torch_device = None
|
129 |
+
if torch.cuda.is_available():
|
130 |
+
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
|
131 |
+
elif torch.backends.mps.is_available():
|
132 |
+
torch_device = torch.device("mps")
|
133 |
+
else:
|
134 |
+
torch_device = torch.device("cpu")
|
135 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
136 |
+
audio = torch.unsqueeze(audio, dim=0)
|
137 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
138 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
139 |
+
audio = audio.detach()
|
140 |
+
# print(
|
141 |
+
# "Initiating f0 Crepe Feature Extraction with an extraction_crepe_hop_length of: " +
|
142 |
+
# str(crepe_hop_length)
|
143 |
+
# )
|
144 |
+
# Pitch prediction for pitch extraction
|
145 |
+
pitch: Tensor = torchcrepe.predict(
|
146 |
+
audio,
|
147 |
+
self.fs,
|
148 |
+
crepe_hop_length,
|
149 |
+
self.f0_min,
|
150 |
+
self.f0_max,
|
151 |
+
"full",
|
152 |
+
batch_size=crepe_hop_length * 2,
|
153 |
+
device=torch_device,
|
154 |
+
pad=True
|
155 |
+
)
|
156 |
+
p_len = p_len or x.shape[0] // crepe_hop_length
|
157 |
+
# Resize the pitch
|
158 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
159 |
+
source[source < 0.001] = np.nan
|
160 |
+
target = np.interp(
|
161 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
162 |
+
np.arange(0, len(source)),
|
163 |
+
source
|
164 |
+
)
|
165 |
+
f0 = np.nan_to_num(target)
|
166 |
+
elif method == "harvest":
|
167 |
+
f0, t = pyworld.harvest(
|
168 |
+
x.astype(np.double),
|
169 |
+
fs=self.fs,
|
170 |
+
f0_ceil=self.f0_max,
|
171 |
+
f0_floor=self.f0_min,
|
172 |
+
frame_period=1000 * self.hop / self.fs,
|
173 |
+
)
|
174 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
|
175 |
+
f0 = signal.medfilt(f0, 3)
|
176 |
+
f0 = f0[1:]
|
177 |
+
elif method == "dio":
|
178 |
+
f0, t = pyworld.dio(
|
179 |
+
x.astype(np.double),
|
180 |
+
fs=self.fs,
|
181 |
+
f0_ceil=self.f0_max,
|
182 |
+
f0_floor=self.f0_min,
|
183 |
+
frame_period=1000 * self.hop / self.fs,
|
184 |
+
)
|
185 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
|
186 |
+
f0 = signal.medfilt(f0, 3)
|
187 |
+
f0 = f0[1:]
|
188 |
+
f0_computation_stack.append(f0)
|
189 |
+
|
190 |
+
for fc in f0_computation_stack:
|
191 |
+
print(len(fc))
|
192 |
+
|
193 |
+
# print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
|
194 |
+
|
195 |
+
f0_median_hybrid = None
|
196 |
+
if len(f0_computation_stack) == 1:
|
197 |
+
f0_median_hybrid = f0_computation_stack[0]
|
198 |
+
else:
|
199 |
+
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
200 |
+
return f0_median_hybrid
|
201 |
+
|
202 |
+
def compute_f0(self, path, f0_method, crepe_hop_length):
|
203 |
+
x = load_audio(path, self.fs)
|
204 |
+
p_len = x.shape[0] // self.hop
|
205 |
+
if f0_method == "pm":
|
206 |
+
time_step = 160 / 16000 * 1000
|
207 |
+
f0 = (
|
208 |
+
parselmouth.Sound(x, self.fs)
|
209 |
+
.to_pitch_ac(
|
210 |
+
time_step=time_step / 1000,
|
211 |
+
voicing_threshold=0.6,
|
212 |
+
pitch_floor=self.f0_min,
|
213 |
+
pitch_ceiling=self.f0_max,
|
214 |
+
)
|
215 |
+
.selected_array["frequency"]
|
216 |
+
)
|
217 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
218 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
219 |
+
f0 = np.pad(
|
220 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
221 |
+
)
|
222 |
+
elif f0_method == "harvest":
|
223 |
+
f0, t = pyworld.harvest(
|
224 |
+
x.astype(np.double),
|
225 |
+
fs=self.fs,
|
226 |
+
f0_ceil=self.f0_max,
|
227 |
+
f0_floor=self.f0_min,
|
228 |
+
frame_period=1000 * self.hop / self.fs,
|
229 |
+
)
|
230 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
|
231 |
+
elif f0_method == "dio":
|
232 |
+
f0, t = pyworld.dio(
|
233 |
+
x.astype(np.double),
|
234 |
+
fs=self.fs,
|
235 |
+
f0_ceil=self.f0_max,
|
236 |
+
f0_floor=self.f0_min,
|
237 |
+
frame_period=1000 * self.hop / self.fs,
|
238 |
+
)
|
239 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
|
240 |
+
elif f0_method == "crepe": # Fork Feature: Added crepe f0 for f0 feature extraction
|
241 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
242 |
+
torch_device_index = 0
|
243 |
+
torch_device = None
|
244 |
+
if torch.cuda.is_available():
|
245 |
+
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
|
246 |
+
elif torch.backends.mps.is_available():
|
247 |
+
torch_device = torch.device("mps")
|
248 |
+
else:
|
249 |
+
torch_device = torch.device("cpu")
|
250 |
+
model = "full"
|
251 |
+
batch_size = 512
|
252 |
+
# Compute pitch using first gpu
|
253 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
254 |
+
f0, pd = torchcrepe.predict(
|
255 |
+
audio,
|
256 |
+
self.fs,
|
257 |
+
160,
|
258 |
+
self.f0_min,
|
259 |
+
self.f0_max,
|
260 |
+
model,
|
261 |
+
batch_size=batch_size,
|
262 |
+
device=torch_device,
|
263 |
+
return_periodicity=True,
|
264 |
+
)
|
265 |
+
pd = torchcrepe.filter.median(pd, 3)
|
266 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
267 |
+
f0[pd < 0.1] = 0
|
268 |
+
f0 = f0[0].cpu().numpy()
|
269 |
+
elif f0_method == "mangio-crepe":
|
270 |
+
# print("Performing crepe pitch extraction. (EXPERIMENTAL)")
|
271 |
+
# print("CREPE PITCH EXTRACTION HOP LENGTH: " + str(crepe_hop_length))
|
272 |
+
x = x.astype(np.float32)
|
273 |
+
x /= np.quantile(np.abs(x), 0.999)
|
274 |
+
torch_device_index = 0
|
275 |
+
torch_device = None
|
276 |
+
if torch.cuda.is_available():
|
277 |
+
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
|
278 |
+
elif torch.backends.mps.is_available():
|
279 |
+
torch_device = torch.device("mps")
|
280 |
+
else:
|
281 |
+
torch_device = torch.device("cpu")
|
282 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
283 |
+
audio = torch.unsqueeze(audio, dim=0)
|
284 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
285 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
286 |
+
audio = audio.detach()
|
287 |
+
# print(
|
288 |
+
# "Initiating f0 Crepe Feature Extraction with an extraction_crepe_hop_length of: " +
|
289 |
+
# str(crepe_hop_length)
|
290 |
+
# )
|
291 |
+
# Pitch prediction for pitch extraction
|
292 |
+
pitch: Tensor = torchcrepe.predict(
|
293 |
+
audio,
|
294 |
+
self.fs,
|
295 |
+
crepe_hop_length,
|
296 |
+
self.f0_min,
|
297 |
+
self.f0_max,
|
298 |
+
"full",
|
299 |
+
batch_size=crepe_hop_length * 2,
|
300 |
+
device=torch_device,
|
301 |
+
pad=True
|
302 |
+
)
|
303 |
+
p_len = p_len or x.shape[0] // crepe_hop_length
|
304 |
+
# Resize the pitch
|
305 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
306 |
+
source[source < 0.001] = np.nan
|
307 |
+
target = np.interp(
|
308 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
309 |
+
np.arange(0, len(source)),
|
310 |
+
source
|
311 |
+
)
|
312 |
+
f0 = np.nan_to_num(target)
|
313 |
+
elif "hybrid" in f0_method: # EXPERIMENTAL
|
314 |
+
# Perform hybrid median pitch estimation
|
315 |
+
time_step = 160 / 16000 * 1000
|
316 |
+
f0 = self.get_f0_hybrid_computation(
|
317 |
+
f0_method,
|
318 |
+
x,
|
319 |
+
self.f0_min,
|
320 |
+
self.f0_max,
|
321 |
+
p_len,
|
322 |
+
crepe_hop_length,
|
323 |
+
time_step
|
324 |
+
)
|
325 |
+
# Mangio-RVC-Fork Feature: Add hybrid f0 inference to feature extraction. EXPERIMENTAL...
|
326 |
+
|
327 |
+
return f0
|
328 |
+
|
329 |
+
def coarse_f0(self, f0):
|
330 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
331 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
332 |
+
self.f0_bin - 2
|
333 |
+
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
334 |
+
|
335 |
+
# use 0 or 1
|
336 |
+
f0_mel[f0_mel <= 1] = 1
|
337 |
+
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
|
338 |
+
f0_coarse = np.rint(f0_mel).astype(int)
|
339 |
+
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
|
340 |
+
f0_coarse.max(),
|
341 |
+
f0_coarse.min(),
|
342 |
+
)
|
343 |
+
return f0_coarse
|
344 |
+
|
345 |
+
def go(self, paths, f0_method, crepe_hop_length, thread_n):
|
346 |
+
if len(paths) == 0:
|
347 |
+
printt("no-f0-todo")
|
348 |
+
else:
|
349 |
+
with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar:
|
350 |
+
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
|
351 |
+
try:
|
352 |
+
pbar.set_description("thread:%s, f0ing, Hop-Length:%s" % (thread_n, crepe_hop_length))
|
353 |
+
pbar.update(1)
|
354 |
+
if (
|
355 |
+
os.path.exists(opt_path1 + ".npy") == True
|
356 |
+
and os.path.exists(opt_path2 + ".npy") == True
|
357 |
+
):
|
358 |
+
continue
|
359 |
+
featur_pit = self.compute_f0(inp_path, f0_method, crepe_hop_length)
|
360 |
+
np.save(
|
361 |
+
opt_path2,
|
362 |
+
featur_pit,
|
363 |
+
allow_pickle=False,
|
364 |
+
) # nsf
|
365 |
+
coarse_pit = self.coarse_f0(featur_pit)
|
366 |
+
np.save(
|
367 |
+
opt_path1,
|
368 |
+
coarse_pit,
|
369 |
+
allow_pickle=False,
|
370 |
+
) # ori
|
371 |
+
except:
|
372 |
+
printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()))
|
373 |
+
|
374 |
+
|
375 |
+
if __name__ == "__main__":
|
376 |
+
# exp_dir=r"E:\codes\py39\dataset\mi-test"
|
377 |
+
# n_p=16
|
378 |
+
# f = open("%s/log_extract_f0.log"%exp_dir, "w")
|
379 |
+
printt(sys.argv)
|
380 |
+
featureInput = FeatureInput()
|
381 |
+
paths = []
|
382 |
+
inp_root = "%s/1_16k_wavs" % (exp_dir)
|
383 |
+
opt_root1 = "%s/2a_f0" % (exp_dir)
|
384 |
+
opt_root2 = "%s/2b-f0nsf" % (exp_dir)
|
385 |
+
|
386 |
+
os.makedirs(opt_root1, exist_ok=True)
|
387 |
+
os.makedirs(opt_root2, exist_ok=True)
|
388 |
+
for name in sorted(list(os.listdir(inp_root))):
|
389 |
+
inp_path = "%s/%s" % (inp_root, name)
|
390 |
+
if "spec" in inp_path:
|
391 |
+
continue
|
392 |
+
opt_path1 = "%s/%s" % (opt_root1, name)
|
393 |
+
opt_path2 = "%s/%s" % (opt_root2, name)
|
394 |
+
paths.append([inp_path, opt_path1, opt_path2])
|
395 |
+
|
396 |
+
ps = []
|
397 |
+
print("Using f0 method: " + f0method)
|
398 |
+
for i in range(n_p):
|
399 |
+
p = Process(
|
400 |
+
target=featureInput.go,
|
401 |
+
args=(
|
402 |
+
paths[i::n_p],
|
403 |
+
f0method,
|
404 |
+
extraction_crepe_hop_length,
|
405 |
+
i
|
406 |
+
),
|
407 |
+
)
|
408 |
+
ps.append(p)
|
409 |
+
p.start()
|
410 |
+
for i in range(n_p):
|
411 |
+
ps[i].join()
|