Upload extract_feature_print.py with huggingface_hub
Browse files- extract_feature_print.py +123 -0
extract_feature_print.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, sys, traceback
|
| 2 |
+
|
| 3 |
+
# device=sys.argv[1]
|
| 4 |
+
n_part = int(sys.argv[2])
|
| 5 |
+
i_part = int(sys.argv[3])
|
| 6 |
+
if len(sys.argv) == 5:
|
| 7 |
+
exp_dir = sys.argv[4]
|
| 8 |
+
version = sys.argv[5]
|
| 9 |
+
else:
|
| 10 |
+
i_gpu = sys.argv[4]
|
| 11 |
+
exp_dir = sys.argv[5]
|
| 12 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
|
| 13 |
+
version = sys.argv[6]
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn.functional as F
|
| 16 |
+
import soundfile as sf
|
| 17 |
+
import numpy as np
|
| 18 |
+
from fairseq import checkpoint_utils
|
| 19 |
+
|
| 20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
|
| 22 |
+
if torch.cuda.is_available():
|
| 23 |
+
device = "cuda"
|
| 24 |
+
elif torch.backends.mps.is_available():
|
| 25 |
+
device = "mps"
|
| 26 |
+
else:
|
| 27 |
+
device = "cpu"
|
| 28 |
+
|
| 29 |
+
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def printt(strr):
|
| 33 |
+
print(strr)
|
| 34 |
+
f.write("%s\n" % strr)
|
| 35 |
+
f.flush()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
printt(sys.argv)
|
| 39 |
+
model_path = "hubert_base.pt"
|
| 40 |
+
|
| 41 |
+
printt(exp_dir)
|
| 42 |
+
wavPath = "%s/1_16k_wavs" % exp_dir
|
| 43 |
+
outPath = (
|
| 44 |
+
"%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir
|
| 45 |
+
)
|
| 46 |
+
os.makedirs(outPath, exist_ok=True)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# wave must be 16k, hop_size=320
|
| 50 |
+
def readwave(wav_path, normalize=False):
|
| 51 |
+
wav, sr = sf.read(wav_path)
|
| 52 |
+
assert sr == 16000
|
| 53 |
+
feats = torch.from_numpy(wav).float()
|
| 54 |
+
if feats.dim() == 2: # double channels
|
| 55 |
+
feats = feats.mean(-1)
|
| 56 |
+
assert feats.dim() == 1, feats.dim()
|
| 57 |
+
if normalize:
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
feats = F.layer_norm(feats, feats.shape)
|
| 60 |
+
feats = feats.view(1, -1)
|
| 61 |
+
return feats
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# HuBERT model
|
| 65 |
+
printt("load model(s) from {}".format(model_path))
|
| 66 |
+
# if hubert model is exist
|
| 67 |
+
if os.access(model_path, os.F_OK) == False:
|
| 68 |
+
printt(
|
| 69 |
+
"Error: Extracting is shut down because %s does not exist, you may download it from https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main"
|
| 70 |
+
% model_path
|
| 71 |
+
)
|
| 72 |
+
exit(0)
|
| 73 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
| 74 |
+
[model_path],
|
| 75 |
+
suffix="",
|
| 76 |
+
)
|
| 77 |
+
model = models[0]
|
| 78 |
+
model = model.to(device)
|
| 79 |
+
printt("move model to %s" % device)
|
| 80 |
+
if device not in ["mps", "cpu"]:
|
| 81 |
+
model = model.half()
|
| 82 |
+
model.eval()
|
| 83 |
+
|
| 84 |
+
todo = sorted(list(os.listdir(wavPath)))[i_part::n_part]
|
| 85 |
+
n = max(1, len(todo) // 10) # 最多打印十条
|
| 86 |
+
if len(todo) == 0:
|
| 87 |
+
printt("no-feature-todo")
|
| 88 |
+
else:
|
| 89 |
+
printt("all-feature-%s" % len(todo))
|
| 90 |
+
for idx, file in enumerate(todo):
|
| 91 |
+
try:
|
| 92 |
+
if file.endswith(".wav"):
|
| 93 |
+
wav_path = "%s/%s" % (wavPath, file)
|
| 94 |
+
out_path = "%s/%s" % (outPath, file.replace("wav", "npy"))
|
| 95 |
+
|
| 96 |
+
if os.path.exists(out_path):
|
| 97 |
+
continue
|
| 98 |
+
|
| 99 |
+
feats = readwave(wav_path, normalize=saved_cfg.task.normalize)
|
| 100 |
+
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
| 101 |
+
inputs = {
|
| 102 |
+
"source": feats.half().to(device)
|
| 103 |
+
if device not in ["mps", "cpu"]
|
| 104 |
+
else feats.to(device),
|
| 105 |
+
"padding_mask": padding_mask.to(device),
|
| 106 |
+
"output_layer": 9 if version == "v1" else 12, # layer 9
|
| 107 |
+
}
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
logits = model.extract_features(**inputs)
|
| 110 |
+
feats = (
|
| 111 |
+
model.final_proj(logits[0]) if version == "v1" else logits[0]
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
feats = feats.squeeze(0).float().cpu().numpy()
|
| 115 |
+
if np.isnan(feats).sum() == 0:
|
| 116 |
+
np.save(out_path, feats, allow_pickle=False)
|
| 117 |
+
else:
|
| 118 |
+
printt("%s-contains nan" % file)
|
| 119 |
+
if idx % n == 0:
|
| 120 |
+
printt("now-%s,all-%s,%s,%s" % (idx, len(todo), file, feats.shape))
|
| 121 |
+
except:
|
| 122 |
+
printt(traceback.format_exc())
|
| 123 |
+
printt("all-feature-done")
|