Upload folder using huggingface_hub
Browse files- uvr5_pack/lib_v5/dataset.py +183 -0
- uvr5_pack/lib_v5/layers.py +118 -0
- uvr5_pack/lib_v5/layers_123812KB .py +118 -0
- uvr5_pack/lib_v5/layers_123821KB.py +118 -0
- uvr5_pack/lib_v5/layers_33966KB.py +126 -0
- uvr5_pack/lib_v5/layers_537227KB.py +126 -0
- uvr5_pack/lib_v5/layers_537238KB.py +126 -0
- uvr5_pack/lib_v5/layers_new.py +125 -0
- uvr5_pack/lib_v5/model_param_init.py +69 -0
- uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json +19 -0
- uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json +19 -0
- uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json +19 -0
- uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json +19 -0
- uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json +19 -0
- uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json +19 -0
- uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json +19 -0
- uvr5_pack/lib_v5/modelparams/2band_32000.json +30 -0
- uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json +30 -0
- uvr5_pack/lib_v5/modelparams/2band_48000.json +30 -0
- uvr5_pack/lib_v5/modelparams/3band_44100.json +42 -0
- uvr5_pack/lib_v5/modelparams/3band_44100_mid.json +43 -0
- uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json +43 -0
- uvr5_pack/lib_v5/modelparams/4band_44100.json +54 -0
- uvr5_pack/lib_v5/modelparams/4band_44100_mid.json +55 -0
- uvr5_pack/lib_v5/modelparams/4band_44100_msb.json +55 -0
- uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json +55 -0
- uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json +55 -0
- uvr5_pack/lib_v5/modelparams/4band_44100_sw.json +55 -0
- uvr5_pack/lib_v5/modelparams/4band_v2.json +54 -0
- uvr5_pack/lib_v5/modelparams/4band_v2_sn.json +55 -0
- uvr5_pack/lib_v5/modelparams/4band_v3.json +54 -0
- uvr5_pack/lib_v5/modelparams/ensemble.json +43 -0
- uvr5_pack/lib_v5/nets.py +123 -0
- uvr5_pack/lib_v5/nets_123812KB.py +122 -0
- uvr5_pack/lib_v5/nets_123821KB.py +122 -0
- uvr5_pack/lib_v5/nets_33966KB.py +122 -0
- uvr5_pack/lib_v5/nets_537227KB.py +123 -0
- uvr5_pack/lib_v5/nets_537238KB.py +123 -0
- uvr5_pack/lib_v5/nets_61968KB.py +122 -0
- uvr5_pack/lib_v5/nets_new.py +132 -0
- uvr5_pack/lib_v5/spec_utils.py +667 -0
- uvr5_pack/name_params.json +263 -0
- uvr5_pack/utils.py +120 -0
uvr5_pack/lib_v5/dataset.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.utils.data
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
|
| 9 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
| 13 |
+
def __init__(self, patch_list):
|
| 14 |
+
self.patch_list = patch_list
|
| 15 |
+
|
| 16 |
+
def __len__(self):
|
| 17 |
+
return len(self.patch_list)
|
| 18 |
+
|
| 19 |
+
def __getitem__(self, idx):
|
| 20 |
+
path = self.patch_list[idx]
|
| 21 |
+
data = np.load(path)
|
| 22 |
+
|
| 23 |
+
X, y = data["X"], data["y"]
|
| 24 |
+
|
| 25 |
+
X_mag = np.abs(X)
|
| 26 |
+
y_mag = np.abs(y)
|
| 27 |
+
|
| 28 |
+
return X_mag, y_mag
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def make_pair(mix_dir, inst_dir):
|
| 32 |
+
input_exts = [".wav", ".m4a", ".mp3", ".mp4", ".flac"]
|
| 33 |
+
|
| 34 |
+
X_list = sorted(
|
| 35 |
+
[
|
| 36 |
+
os.path.join(mix_dir, fname)
|
| 37 |
+
for fname in os.listdir(mix_dir)
|
| 38 |
+
if os.path.splitext(fname)[1] in input_exts
|
| 39 |
+
]
|
| 40 |
+
)
|
| 41 |
+
y_list = sorted(
|
| 42 |
+
[
|
| 43 |
+
os.path.join(inst_dir, fname)
|
| 44 |
+
for fname in os.listdir(inst_dir)
|
| 45 |
+
if os.path.splitext(fname)[1] in input_exts
|
| 46 |
+
]
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
filelist = list(zip(X_list, y_list))
|
| 50 |
+
|
| 51 |
+
return filelist
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
| 55 |
+
if split_mode == "random":
|
| 56 |
+
filelist = make_pair(
|
| 57 |
+
os.path.join(dataset_dir, "mixtures"),
|
| 58 |
+
os.path.join(dataset_dir, "instruments"),
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
random.shuffle(filelist)
|
| 62 |
+
|
| 63 |
+
if len(val_filelist) == 0:
|
| 64 |
+
val_size = int(len(filelist) * val_rate)
|
| 65 |
+
train_filelist = filelist[:-val_size]
|
| 66 |
+
val_filelist = filelist[-val_size:]
|
| 67 |
+
else:
|
| 68 |
+
train_filelist = [
|
| 69 |
+
pair for pair in filelist if list(pair) not in val_filelist
|
| 70 |
+
]
|
| 71 |
+
elif split_mode == "subdirs":
|
| 72 |
+
if len(val_filelist) != 0:
|
| 73 |
+
raise ValueError(
|
| 74 |
+
"The `val_filelist` option is not available in `subdirs` mode"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
train_filelist = make_pair(
|
| 78 |
+
os.path.join(dataset_dir, "training/mixtures"),
|
| 79 |
+
os.path.join(dataset_dir, "training/instruments"),
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
val_filelist = make_pair(
|
| 83 |
+
os.path.join(dataset_dir, "validation/mixtures"),
|
| 84 |
+
os.path.join(dataset_dir, "validation/instruments"),
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
return train_filelist, val_filelist
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
|
| 91 |
+
perm = np.random.permutation(len(X))
|
| 92 |
+
for i, idx in enumerate(tqdm(perm)):
|
| 93 |
+
if np.random.uniform() < reduction_rate:
|
| 94 |
+
y[idx] = spec_utils.reduce_vocal_aggressively(
|
| 95 |
+
X[idx], y[idx], reduction_mask
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
if np.random.uniform() < 0.5:
|
| 99 |
+
# swap channel
|
| 100 |
+
X[idx] = X[idx, ::-1]
|
| 101 |
+
y[idx] = y[idx, ::-1]
|
| 102 |
+
if np.random.uniform() < 0.02:
|
| 103 |
+
# mono
|
| 104 |
+
X[idx] = X[idx].mean(axis=0, keepdims=True)
|
| 105 |
+
y[idx] = y[idx].mean(axis=0, keepdims=True)
|
| 106 |
+
if np.random.uniform() < 0.02:
|
| 107 |
+
# inst
|
| 108 |
+
X[idx] = y[idx]
|
| 109 |
+
|
| 110 |
+
if np.random.uniform() < mixup_rate and i < len(perm) - 1:
|
| 111 |
+
lam = np.random.beta(mixup_alpha, mixup_alpha)
|
| 112 |
+
X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
|
| 113 |
+
y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]
|
| 114 |
+
|
| 115 |
+
return X, y
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def make_padding(width, cropsize, offset):
|
| 119 |
+
left = offset
|
| 120 |
+
roi_size = cropsize - left * 2
|
| 121 |
+
if roi_size == 0:
|
| 122 |
+
roi_size = cropsize
|
| 123 |
+
right = roi_size - (width % roi_size) + left
|
| 124 |
+
|
| 125 |
+
return left, right, roi_size
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
|
| 129 |
+
len_dataset = patches * len(filelist)
|
| 130 |
+
|
| 131 |
+
X_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
| 132 |
+
y_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
| 133 |
+
|
| 134 |
+
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
| 135 |
+
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
| 136 |
+
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
| 137 |
+
X, y = X / coef, y / coef
|
| 138 |
+
|
| 139 |
+
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
| 140 |
+
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
|
| 141 |
+
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")
|
| 142 |
+
|
| 143 |
+
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
|
| 144 |
+
ends = starts + cropsize
|
| 145 |
+
for j in range(patches):
|
| 146 |
+
idx = i * patches + j
|
| 147 |
+
X_dataset[idx] = X_pad[:, :, starts[j] : ends[j]]
|
| 148 |
+
y_dataset[idx] = y_pad[:, :, starts[j] : ends[j]]
|
| 149 |
+
|
| 150 |
+
return X_dataset, y_dataset
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
| 154 |
+
patch_list = []
|
| 155 |
+
patch_dir = "cs{}_sr{}_hl{}_nf{}_of{}".format(
|
| 156 |
+
cropsize, sr, hop_length, n_fft, offset
|
| 157 |
+
)
|
| 158 |
+
os.makedirs(patch_dir, exist_ok=True)
|
| 159 |
+
|
| 160 |
+
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
| 161 |
+
basename = os.path.splitext(os.path.basename(X_path))[0]
|
| 162 |
+
|
| 163 |
+
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
| 164 |
+
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
| 165 |
+
X, y = X / coef, y / coef
|
| 166 |
+
|
| 167 |
+
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
| 168 |
+
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
|
| 169 |
+
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")
|
| 170 |
+
|
| 171 |
+
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
| 172 |
+
for j in range(len_dataset):
|
| 173 |
+
outpath = os.path.join(patch_dir, "{}_p{}.npz".format(basename, j))
|
| 174 |
+
start = j * roi_size
|
| 175 |
+
if not os.path.exists(outpath):
|
| 176 |
+
np.savez(
|
| 177 |
+
outpath,
|
| 178 |
+
X=X_pad[:, :, start : start + cropsize],
|
| 179 |
+
y=y_pad[:, :, start : start + cropsize],
|
| 180 |
+
)
|
| 181 |
+
patch_list.append(outpath)
|
| 182 |
+
|
| 183 |
+
return VocalRemoverValidationSet(patch_list)
|
uvr5_pack/lib_v5/layers.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Conv2DBNActiv(nn.Module):
|
| 9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 10 |
+
super(Conv2DBNActiv, self).__init__()
|
| 11 |
+
self.conv = nn.Sequential(
|
| 12 |
+
nn.Conv2d(
|
| 13 |
+
nin,
|
| 14 |
+
nout,
|
| 15 |
+
kernel_size=ksize,
|
| 16 |
+
stride=stride,
|
| 17 |
+
padding=pad,
|
| 18 |
+
dilation=dilation,
|
| 19 |
+
bias=False,
|
| 20 |
+
),
|
| 21 |
+
nn.BatchNorm2d(nout),
|
| 22 |
+
activ(),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def __call__(self, x):
|
| 26 |
+
return self.conv(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
| 30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
| 32 |
+
self.conv = nn.Sequential(
|
| 33 |
+
nn.Conv2d(
|
| 34 |
+
nin,
|
| 35 |
+
nin,
|
| 36 |
+
kernel_size=ksize,
|
| 37 |
+
stride=stride,
|
| 38 |
+
padding=pad,
|
| 39 |
+
dilation=dilation,
|
| 40 |
+
groups=nin,
|
| 41 |
+
bias=False,
|
| 42 |
+
),
|
| 43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
| 44 |
+
nn.BatchNorm2d(nout),
|
| 45 |
+
activ(),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def __call__(self, x):
|
| 49 |
+
return self.conv(x)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Encoder(nn.Module):
|
| 53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
| 54 |
+
super(Encoder, self).__init__()
|
| 55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
| 57 |
+
|
| 58 |
+
def __call__(self, x):
|
| 59 |
+
skip = self.conv1(x)
|
| 60 |
+
h = self.conv2(skip)
|
| 61 |
+
|
| 62 |
+
return h, skip
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Decoder(nn.Module):
|
| 66 |
+
def __init__(
|
| 67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
| 68 |
+
):
|
| 69 |
+
super(Decoder, self).__init__()
|
| 70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
| 72 |
+
|
| 73 |
+
def __call__(self, x, skip=None):
|
| 74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
| 75 |
+
if skip is not None:
|
| 76 |
+
skip = spec_utils.crop_center(skip, x)
|
| 77 |
+
x = torch.cat([x, skip], dim=1)
|
| 78 |
+
h = self.conv(x)
|
| 79 |
+
|
| 80 |
+
if self.dropout is not None:
|
| 81 |
+
h = self.dropout(h)
|
| 82 |
+
|
| 83 |
+
return h
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ASPPModule(nn.Module):
|
| 87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
| 88 |
+
super(ASPPModule, self).__init__()
|
| 89 |
+
self.conv1 = nn.Sequential(
|
| 90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
| 91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
| 92 |
+
)
|
| 93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
| 94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
| 95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
| 96 |
+
)
|
| 97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
| 98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
| 99 |
+
)
|
| 100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
| 101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 102 |
+
)
|
| 103 |
+
self.bottleneck = nn.Sequential(
|
| 104 |
+
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
_, _, h, w = x.size()
|
| 109 |
+
feat1 = F.interpolate(
|
| 110 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
| 111 |
+
)
|
| 112 |
+
feat2 = self.conv2(x)
|
| 113 |
+
feat3 = self.conv3(x)
|
| 114 |
+
feat4 = self.conv4(x)
|
| 115 |
+
feat5 = self.conv5(x)
|
| 116 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
| 117 |
+
bottle = self.bottleneck(out)
|
| 118 |
+
return bottle
|
uvr5_pack/lib_v5/layers_123812KB .py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Conv2DBNActiv(nn.Module):
|
| 9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 10 |
+
super(Conv2DBNActiv, self).__init__()
|
| 11 |
+
self.conv = nn.Sequential(
|
| 12 |
+
nn.Conv2d(
|
| 13 |
+
nin,
|
| 14 |
+
nout,
|
| 15 |
+
kernel_size=ksize,
|
| 16 |
+
stride=stride,
|
| 17 |
+
padding=pad,
|
| 18 |
+
dilation=dilation,
|
| 19 |
+
bias=False,
|
| 20 |
+
),
|
| 21 |
+
nn.BatchNorm2d(nout),
|
| 22 |
+
activ(),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def __call__(self, x):
|
| 26 |
+
return self.conv(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
| 30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
| 32 |
+
self.conv = nn.Sequential(
|
| 33 |
+
nn.Conv2d(
|
| 34 |
+
nin,
|
| 35 |
+
nin,
|
| 36 |
+
kernel_size=ksize,
|
| 37 |
+
stride=stride,
|
| 38 |
+
padding=pad,
|
| 39 |
+
dilation=dilation,
|
| 40 |
+
groups=nin,
|
| 41 |
+
bias=False,
|
| 42 |
+
),
|
| 43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
| 44 |
+
nn.BatchNorm2d(nout),
|
| 45 |
+
activ(),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def __call__(self, x):
|
| 49 |
+
return self.conv(x)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Encoder(nn.Module):
|
| 53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
| 54 |
+
super(Encoder, self).__init__()
|
| 55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
| 57 |
+
|
| 58 |
+
def __call__(self, x):
|
| 59 |
+
skip = self.conv1(x)
|
| 60 |
+
h = self.conv2(skip)
|
| 61 |
+
|
| 62 |
+
return h, skip
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Decoder(nn.Module):
|
| 66 |
+
def __init__(
|
| 67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
| 68 |
+
):
|
| 69 |
+
super(Decoder, self).__init__()
|
| 70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
| 72 |
+
|
| 73 |
+
def __call__(self, x, skip=None):
|
| 74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
| 75 |
+
if skip is not None:
|
| 76 |
+
skip = spec_utils.crop_center(skip, x)
|
| 77 |
+
x = torch.cat([x, skip], dim=1)
|
| 78 |
+
h = self.conv(x)
|
| 79 |
+
|
| 80 |
+
if self.dropout is not None:
|
| 81 |
+
h = self.dropout(h)
|
| 82 |
+
|
| 83 |
+
return h
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ASPPModule(nn.Module):
|
| 87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
| 88 |
+
super(ASPPModule, self).__init__()
|
| 89 |
+
self.conv1 = nn.Sequential(
|
| 90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
| 91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
| 92 |
+
)
|
| 93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
| 94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
| 95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
| 96 |
+
)
|
| 97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
| 98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
| 99 |
+
)
|
| 100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
| 101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 102 |
+
)
|
| 103 |
+
self.bottleneck = nn.Sequential(
|
| 104 |
+
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
_, _, h, w = x.size()
|
| 109 |
+
feat1 = F.interpolate(
|
| 110 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
| 111 |
+
)
|
| 112 |
+
feat2 = self.conv2(x)
|
| 113 |
+
feat3 = self.conv3(x)
|
| 114 |
+
feat4 = self.conv4(x)
|
| 115 |
+
feat5 = self.conv5(x)
|
| 116 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
| 117 |
+
bottle = self.bottleneck(out)
|
| 118 |
+
return bottle
|
uvr5_pack/lib_v5/layers_123821KB.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Conv2DBNActiv(nn.Module):
|
| 9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 10 |
+
super(Conv2DBNActiv, self).__init__()
|
| 11 |
+
self.conv = nn.Sequential(
|
| 12 |
+
nn.Conv2d(
|
| 13 |
+
nin,
|
| 14 |
+
nout,
|
| 15 |
+
kernel_size=ksize,
|
| 16 |
+
stride=stride,
|
| 17 |
+
padding=pad,
|
| 18 |
+
dilation=dilation,
|
| 19 |
+
bias=False,
|
| 20 |
+
),
|
| 21 |
+
nn.BatchNorm2d(nout),
|
| 22 |
+
activ(),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def __call__(self, x):
|
| 26 |
+
return self.conv(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
| 30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
| 32 |
+
self.conv = nn.Sequential(
|
| 33 |
+
nn.Conv2d(
|
| 34 |
+
nin,
|
| 35 |
+
nin,
|
| 36 |
+
kernel_size=ksize,
|
| 37 |
+
stride=stride,
|
| 38 |
+
padding=pad,
|
| 39 |
+
dilation=dilation,
|
| 40 |
+
groups=nin,
|
| 41 |
+
bias=False,
|
| 42 |
+
),
|
| 43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
| 44 |
+
nn.BatchNorm2d(nout),
|
| 45 |
+
activ(),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def __call__(self, x):
|
| 49 |
+
return self.conv(x)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Encoder(nn.Module):
|
| 53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
| 54 |
+
super(Encoder, self).__init__()
|
| 55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
| 57 |
+
|
| 58 |
+
def __call__(self, x):
|
| 59 |
+
skip = self.conv1(x)
|
| 60 |
+
h = self.conv2(skip)
|
| 61 |
+
|
| 62 |
+
return h, skip
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Decoder(nn.Module):
|
| 66 |
+
def __init__(
|
| 67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
| 68 |
+
):
|
| 69 |
+
super(Decoder, self).__init__()
|
| 70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
| 72 |
+
|
| 73 |
+
def __call__(self, x, skip=None):
|
| 74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
| 75 |
+
if skip is not None:
|
| 76 |
+
skip = spec_utils.crop_center(skip, x)
|
| 77 |
+
x = torch.cat([x, skip], dim=1)
|
| 78 |
+
h = self.conv(x)
|
| 79 |
+
|
| 80 |
+
if self.dropout is not None:
|
| 81 |
+
h = self.dropout(h)
|
| 82 |
+
|
| 83 |
+
return h
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ASPPModule(nn.Module):
|
| 87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
| 88 |
+
super(ASPPModule, self).__init__()
|
| 89 |
+
self.conv1 = nn.Sequential(
|
| 90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
| 91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
| 92 |
+
)
|
| 93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
| 94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
| 95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
| 96 |
+
)
|
| 97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
| 98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
| 99 |
+
)
|
| 100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
| 101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 102 |
+
)
|
| 103 |
+
self.bottleneck = nn.Sequential(
|
| 104 |
+
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
_, _, h, w = x.size()
|
| 109 |
+
feat1 = F.interpolate(
|
| 110 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
| 111 |
+
)
|
| 112 |
+
feat2 = self.conv2(x)
|
| 113 |
+
feat3 = self.conv3(x)
|
| 114 |
+
feat4 = self.conv4(x)
|
| 115 |
+
feat5 = self.conv5(x)
|
| 116 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
| 117 |
+
bottle = self.bottleneck(out)
|
| 118 |
+
return bottle
|
uvr5_pack/lib_v5/layers_33966KB.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Conv2DBNActiv(nn.Module):
|
| 9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 10 |
+
super(Conv2DBNActiv, self).__init__()
|
| 11 |
+
self.conv = nn.Sequential(
|
| 12 |
+
nn.Conv2d(
|
| 13 |
+
nin,
|
| 14 |
+
nout,
|
| 15 |
+
kernel_size=ksize,
|
| 16 |
+
stride=stride,
|
| 17 |
+
padding=pad,
|
| 18 |
+
dilation=dilation,
|
| 19 |
+
bias=False,
|
| 20 |
+
),
|
| 21 |
+
nn.BatchNorm2d(nout),
|
| 22 |
+
activ(),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def __call__(self, x):
|
| 26 |
+
return self.conv(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
| 30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
| 32 |
+
self.conv = nn.Sequential(
|
| 33 |
+
nn.Conv2d(
|
| 34 |
+
nin,
|
| 35 |
+
nin,
|
| 36 |
+
kernel_size=ksize,
|
| 37 |
+
stride=stride,
|
| 38 |
+
padding=pad,
|
| 39 |
+
dilation=dilation,
|
| 40 |
+
groups=nin,
|
| 41 |
+
bias=False,
|
| 42 |
+
),
|
| 43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
| 44 |
+
nn.BatchNorm2d(nout),
|
| 45 |
+
activ(),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def __call__(self, x):
|
| 49 |
+
return self.conv(x)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Encoder(nn.Module):
|
| 53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
| 54 |
+
super(Encoder, self).__init__()
|
| 55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
| 57 |
+
|
| 58 |
+
def __call__(self, x):
|
| 59 |
+
skip = self.conv1(x)
|
| 60 |
+
h = self.conv2(skip)
|
| 61 |
+
|
| 62 |
+
return h, skip
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Decoder(nn.Module):
|
| 66 |
+
def __init__(
|
| 67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
| 68 |
+
):
|
| 69 |
+
super(Decoder, self).__init__()
|
| 70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
| 72 |
+
|
| 73 |
+
def __call__(self, x, skip=None):
|
| 74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
| 75 |
+
if skip is not None:
|
| 76 |
+
skip = spec_utils.crop_center(skip, x)
|
| 77 |
+
x = torch.cat([x, skip], dim=1)
|
| 78 |
+
h = self.conv(x)
|
| 79 |
+
|
| 80 |
+
if self.dropout is not None:
|
| 81 |
+
h = self.dropout(h)
|
| 82 |
+
|
| 83 |
+
return h
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ASPPModule(nn.Module):
|
| 87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
| 88 |
+
super(ASPPModule, self).__init__()
|
| 89 |
+
self.conv1 = nn.Sequential(
|
| 90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
| 91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
| 92 |
+
)
|
| 93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
| 94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
| 95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
| 96 |
+
)
|
| 97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
| 98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
| 99 |
+
)
|
| 100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
| 101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 102 |
+
)
|
| 103 |
+
self.conv6 = SeperableConv2DBNActiv(
|
| 104 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 105 |
+
)
|
| 106 |
+
self.conv7 = SeperableConv2DBNActiv(
|
| 107 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 108 |
+
)
|
| 109 |
+
self.bottleneck = nn.Sequential(
|
| 110 |
+
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
def forward(self, x):
|
| 114 |
+
_, _, h, w = x.size()
|
| 115 |
+
feat1 = F.interpolate(
|
| 116 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
| 117 |
+
)
|
| 118 |
+
feat2 = self.conv2(x)
|
| 119 |
+
feat3 = self.conv3(x)
|
| 120 |
+
feat4 = self.conv4(x)
|
| 121 |
+
feat5 = self.conv5(x)
|
| 122 |
+
feat6 = self.conv6(x)
|
| 123 |
+
feat7 = self.conv7(x)
|
| 124 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
| 125 |
+
bottle = self.bottleneck(out)
|
| 126 |
+
return bottle
|
uvr5_pack/lib_v5/layers_537227KB.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Conv2DBNActiv(nn.Module):
|
| 9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 10 |
+
super(Conv2DBNActiv, self).__init__()
|
| 11 |
+
self.conv = nn.Sequential(
|
| 12 |
+
nn.Conv2d(
|
| 13 |
+
nin,
|
| 14 |
+
nout,
|
| 15 |
+
kernel_size=ksize,
|
| 16 |
+
stride=stride,
|
| 17 |
+
padding=pad,
|
| 18 |
+
dilation=dilation,
|
| 19 |
+
bias=False,
|
| 20 |
+
),
|
| 21 |
+
nn.BatchNorm2d(nout),
|
| 22 |
+
activ(),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def __call__(self, x):
|
| 26 |
+
return self.conv(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
| 30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
| 32 |
+
self.conv = nn.Sequential(
|
| 33 |
+
nn.Conv2d(
|
| 34 |
+
nin,
|
| 35 |
+
nin,
|
| 36 |
+
kernel_size=ksize,
|
| 37 |
+
stride=stride,
|
| 38 |
+
padding=pad,
|
| 39 |
+
dilation=dilation,
|
| 40 |
+
groups=nin,
|
| 41 |
+
bias=False,
|
| 42 |
+
),
|
| 43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
| 44 |
+
nn.BatchNorm2d(nout),
|
| 45 |
+
activ(),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def __call__(self, x):
|
| 49 |
+
return self.conv(x)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Encoder(nn.Module):
|
| 53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
| 54 |
+
super(Encoder, self).__init__()
|
| 55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
| 57 |
+
|
| 58 |
+
def __call__(self, x):
|
| 59 |
+
skip = self.conv1(x)
|
| 60 |
+
h = self.conv2(skip)
|
| 61 |
+
|
| 62 |
+
return h, skip
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Decoder(nn.Module):
|
| 66 |
+
def __init__(
|
| 67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
| 68 |
+
):
|
| 69 |
+
super(Decoder, self).__init__()
|
| 70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
| 72 |
+
|
| 73 |
+
def __call__(self, x, skip=None):
|
| 74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
| 75 |
+
if skip is not None:
|
| 76 |
+
skip = spec_utils.crop_center(skip, x)
|
| 77 |
+
x = torch.cat([x, skip], dim=1)
|
| 78 |
+
h = self.conv(x)
|
| 79 |
+
|
| 80 |
+
if self.dropout is not None:
|
| 81 |
+
h = self.dropout(h)
|
| 82 |
+
|
| 83 |
+
return h
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ASPPModule(nn.Module):
|
| 87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
| 88 |
+
super(ASPPModule, self).__init__()
|
| 89 |
+
self.conv1 = nn.Sequential(
|
| 90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
| 91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
| 92 |
+
)
|
| 93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
| 94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
| 95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
| 96 |
+
)
|
| 97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
| 98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
| 99 |
+
)
|
| 100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
| 101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 102 |
+
)
|
| 103 |
+
self.conv6 = SeperableConv2DBNActiv(
|
| 104 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 105 |
+
)
|
| 106 |
+
self.conv7 = SeperableConv2DBNActiv(
|
| 107 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 108 |
+
)
|
| 109 |
+
self.bottleneck = nn.Sequential(
|
| 110 |
+
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
def forward(self, x):
|
| 114 |
+
_, _, h, w = x.size()
|
| 115 |
+
feat1 = F.interpolate(
|
| 116 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
| 117 |
+
)
|
| 118 |
+
feat2 = self.conv2(x)
|
| 119 |
+
feat3 = self.conv3(x)
|
| 120 |
+
feat4 = self.conv4(x)
|
| 121 |
+
feat5 = self.conv5(x)
|
| 122 |
+
feat6 = self.conv6(x)
|
| 123 |
+
feat7 = self.conv7(x)
|
| 124 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
| 125 |
+
bottle = self.bottleneck(out)
|
| 126 |
+
return bottle
|
uvr5_pack/lib_v5/layers_537238KB.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Conv2DBNActiv(nn.Module):
|
| 9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 10 |
+
super(Conv2DBNActiv, self).__init__()
|
| 11 |
+
self.conv = nn.Sequential(
|
| 12 |
+
nn.Conv2d(
|
| 13 |
+
nin,
|
| 14 |
+
nout,
|
| 15 |
+
kernel_size=ksize,
|
| 16 |
+
stride=stride,
|
| 17 |
+
padding=pad,
|
| 18 |
+
dilation=dilation,
|
| 19 |
+
bias=False,
|
| 20 |
+
),
|
| 21 |
+
nn.BatchNorm2d(nout),
|
| 22 |
+
activ(),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def __call__(self, x):
|
| 26 |
+
return self.conv(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class SeperableConv2DBNActiv(nn.Module):
|
| 30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 31 |
+
super(SeperableConv2DBNActiv, self).__init__()
|
| 32 |
+
self.conv = nn.Sequential(
|
| 33 |
+
nn.Conv2d(
|
| 34 |
+
nin,
|
| 35 |
+
nin,
|
| 36 |
+
kernel_size=ksize,
|
| 37 |
+
stride=stride,
|
| 38 |
+
padding=pad,
|
| 39 |
+
dilation=dilation,
|
| 40 |
+
groups=nin,
|
| 41 |
+
bias=False,
|
| 42 |
+
),
|
| 43 |
+
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
| 44 |
+
nn.BatchNorm2d(nout),
|
| 45 |
+
activ(),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def __call__(self, x):
|
| 49 |
+
return self.conv(x)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Encoder(nn.Module):
|
| 53 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
| 54 |
+
super(Encoder, self).__init__()
|
| 55 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 56 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
| 57 |
+
|
| 58 |
+
def __call__(self, x):
|
| 59 |
+
skip = self.conv1(x)
|
| 60 |
+
h = self.conv2(skip)
|
| 61 |
+
|
| 62 |
+
return h, skip
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Decoder(nn.Module):
|
| 66 |
+
def __init__(
|
| 67 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
| 68 |
+
):
|
| 69 |
+
super(Decoder, self).__init__()
|
| 70 |
+
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 71 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
| 72 |
+
|
| 73 |
+
def __call__(self, x, skip=None):
|
| 74 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
| 75 |
+
if skip is not None:
|
| 76 |
+
skip = spec_utils.crop_center(skip, x)
|
| 77 |
+
x = torch.cat([x, skip], dim=1)
|
| 78 |
+
h = self.conv(x)
|
| 79 |
+
|
| 80 |
+
if self.dropout is not None:
|
| 81 |
+
h = self.dropout(h)
|
| 82 |
+
|
| 83 |
+
return h
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ASPPModule(nn.Module):
|
| 87 |
+
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
| 88 |
+
super(ASPPModule, self).__init__()
|
| 89 |
+
self.conv1 = nn.Sequential(
|
| 90 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
| 91 |
+
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
| 92 |
+
)
|
| 93 |
+
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
| 94 |
+
self.conv3 = SeperableConv2DBNActiv(
|
| 95 |
+
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
| 96 |
+
)
|
| 97 |
+
self.conv4 = SeperableConv2DBNActiv(
|
| 98 |
+
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
| 99 |
+
)
|
| 100 |
+
self.conv5 = SeperableConv2DBNActiv(
|
| 101 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 102 |
+
)
|
| 103 |
+
self.conv6 = SeperableConv2DBNActiv(
|
| 104 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 105 |
+
)
|
| 106 |
+
self.conv7 = SeperableConv2DBNActiv(
|
| 107 |
+
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
| 108 |
+
)
|
| 109 |
+
self.bottleneck = nn.Sequential(
|
| 110 |
+
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
def forward(self, x):
|
| 114 |
+
_, _, h, w = x.size()
|
| 115 |
+
feat1 = F.interpolate(
|
| 116 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
| 117 |
+
)
|
| 118 |
+
feat2 = self.conv2(x)
|
| 119 |
+
feat3 = self.conv3(x)
|
| 120 |
+
feat4 = self.conv4(x)
|
| 121 |
+
feat5 = self.conv5(x)
|
| 122 |
+
feat6 = self.conv6(x)
|
| 123 |
+
feat7 = self.conv7(x)
|
| 124 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
| 125 |
+
bottle = self.bottleneck(out)
|
| 126 |
+
return bottle
|
uvr5_pack/lib_v5/layers_new.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Conv2DBNActiv(nn.Module):
|
| 9 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
| 10 |
+
super(Conv2DBNActiv, self).__init__()
|
| 11 |
+
self.conv = nn.Sequential(
|
| 12 |
+
nn.Conv2d(
|
| 13 |
+
nin,
|
| 14 |
+
nout,
|
| 15 |
+
kernel_size=ksize,
|
| 16 |
+
stride=stride,
|
| 17 |
+
padding=pad,
|
| 18 |
+
dilation=dilation,
|
| 19 |
+
bias=False,
|
| 20 |
+
),
|
| 21 |
+
nn.BatchNorm2d(nout),
|
| 22 |
+
activ(),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def __call__(self, x):
|
| 26 |
+
return self.conv(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class Encoder(nn.Module):
|
| 30 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
| 31 |
+
super(Encoder, self).__init__()
|
| 32 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
|
| 33 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
| 34 |
+
|
| 35 |
+
def __call__(self, x):
|
| 36 |
+
h = self.conv1(x)
|
| 37 |
+
h = self.conv2(h)
|
| 38 |
+
|
| 39 |
+
return h
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class Decoder(nn.Module):
|
| 43 |
+
def __init__(
|
| 44 |
+
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
| 45 |
+
):
|
| 46 |
+
super(Decoder, self).__init__()
|
| 47 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
| 48 |
+
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
| 49 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
| 50 |
+
|
| 51 |
+
def __call__(self, x, skip=None):
|
| 52 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
| 53 |
+
|
| 54 |
+
if skip is not None:
|
| 55 |
+
skip = spec_utils.crop_center(skip, x)
|
| 56 |
+
x = torch.cat([x, skip], dim=1)
|
| 57 |
+
|
| 58 |
+
h = self.conv1(x)
|
| 59 |
+
# h = self.conv2(h)
|
| 60 |
+
|
| 61 |
+
if self.dropout is not None:
|
| 62 |
+
h = self.dropout(h)
|
| 63 |
+
|
| 64 |
+
return h
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class ASPPModule(nn.Module):
|
| 68 |
+
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
|
| 69 |
+
super(ASPPModule, self).__init__()
|
| 70 |
+
self.conv1 = nn.Sequential(
|
| 71 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
| 72 |
+
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ),
|
| 73 |
+
)
|
| 74 |
+
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
| 75 |
+
self.conv3 = Conv2DBNActiv(
|
| 76 |
+
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
|
| 77 |
+
)
|
| 78 |
+
self.conv4 = Conv2DBNActiv(
|
| 79 |
+
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
|
| 80 |
+
)
|
| 81 |
+
self.conv5 = Conv2DBNActiv(
|
| 82 |
+
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
|
| 83 |
+
)
|
| 84 |
+
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
|
| 85 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
| 86 |
+
|
| 87 |
+
def forward(self, x):
|
| 88 |
+
_, _, h, w = x.size()
|
| 89 |
+
feat1 = F.interpolate(
|
| 90 |
+
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
| 91 |
+
)
|
| 92 |
+
feat2 = self.conv2(x)
|
| 93 |
+
feat3 = self.conv3(x)
|
| 94 |
+
feat4 = self.conv4(x)
|
| 95 |
+
feat5 = self.conv5(x)
|
| 96 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
| 97 |
+
out = self.bottleneck(out)
|
| 98 |
+
|
| 99 |
+
if self.dropout is not None:
|
| 100 |
+
out = self.dropout(out)
|
| 101 |
+
|
| 102 |
+
return out
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class LSTMModule(nn.Module):
|
| 106 |
+
def __init__(self, nin_conv, nin_lstm, nout_lstm):
|
| 107 |
+
super(LSTMModule, self).__init__()
|
| 108 |
+
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
|
| 109 |
+
self.lstm = nn.LSTM(
|
| 110 |
+
input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True
|
| 111 |
+
)
|
| 112 |
+
self.dense = nn.Sequential(
|
| 113 |
+
nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU()
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
def forward(self, x):
|
| 117 |
+
N, _, nbins, nframes = x.size()
|
| 118 |
+
h = self.conv(x)[:, 0] # N, nbins, nframes
|
| 119 |
+
h = h.permute(2, 0, 1) # nframes, N, nbins
|
| 120 |
+
h, _ = self.lstm(h)
|
| 121 |
+
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
|
| 122 |
+
h = h.reshape(nframes, N, 1, nbins)
|
| 123 |
+
h = h.permute(1, 2, 3, 0)
|
| 124 |
+
|
| 125 |
+
return h
|
uvr5_pack/lib_v5/model_param_init.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import pathlib
|
| 4 |
+
|
| 5 |
+
default_param = {}
|
| 6 |
+
default_param["bins"] = 768
|
| 7 |
+
default_param["unstable_bins"] = 9 # training only
|
| 8 |
+
default_param["reduction_bins"] = 762 # training only
|
| 9 |
+
default_param["sr"] = 44100
|
| 10 |
+
default_param["pre_filter_start"] = 757
|
| 11 |
+
default_param["pre_filter_stop"] = 768
|
| 12 |
+
default_param["band"] = {}
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
default_param["band"][1] = {
|
| 16 |
+
"sr": 11025,
|
| 17 |
+
"hl": 128,
|
| 18 |
+
"n_fft": 960,
|
| 19 |
+
"crop_start": 0,
|
| 20 |
+
"crop_stop": 245,
|
| 21 |
+
"lpf_start": 61, # inference only
|
| 22 |
+
"res_type": "polyphase",
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
default_param["band"][2] = {
|
| 26 |
+
"sr": 44100,
|
| 27 |
+
"hl": 512,
|
| 28 |
+
"n_fft": 1536,
|
| 29 |
+
"crop_start": 24,
|
| 30 |
+
"crop_stop": 547,
|
| 31 |
+
"hpf_start": 81, # inference only
|
| 32 |
+
"res_type": "sinc_best",
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def int_keys(d):
|
| 37 |
+
r = {}
|
| 38 |
+
for k, v in d:
|
| 39 |
+
if k.isdigit():
|
| 40 |
+
k = int(k)
|
| 41 |
+
r[k] = v
|
| 42 |
+
return r
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class ModelParameters(object):
|
| 46 |
+
def __init__(self, config_path=""):
|
| 47 |
+
if ".pth" == pathlib.Path(config_path).suffix:
|
| 48 |
+
import zipfile
|
| 49 |
+
|
| 50 |
+
with zipfile.ZipFile(config_path, "r") as zip:
|
| 51 |
+
self.param = json.loads(
|
| 52 |
+
zip.read("param.json"), object_pairs_hook=int_keys
|
| 53 |
+
)
|
| 54 |
+
elif ".json" == pathlib.Path(config_path).suffix:
|
| 55 |
+
with open(config_path, "r") as f:
|
| 56 |
+
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
|
| 57 |
+
else:
|
| 58 |
+
self.param = default_param
|
| 59 |
+
|
| 60 |
+
for k in [
|
| 61 |
+
"mid_side",
|
| 62 |
+
"mid_side_b",
|
| 63 |
+
"mid_side_b2",
|
| 64 |
+
"stereo_w",
|
| 65 |
+
"stereo_n",
|
| 66 |
+
"reverse",
|
| 67 |
+
]:
|
| 68 |
+
if not k in self.param:
|
| 69 |
+
self.param[k] = False
|
uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 1024,
|
| 3 |
+
"unstable_bins": 0,
|
| 4 |
+
"reduction_bins": 0,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 16000,
|
| 8 |
+
"hl": 512,
|
| 9 |
+
"n_fft": 2048,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 1024,
|
| 12 |
+
"hpf_start": -1,
|
| 13 |
+
"res_type": "sinc_best"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"sr": 16000,
|
| 17 |
+
"pre_filter_start": 1023,
|
| 18 |
+
"pre_filter_stop": 1024
|
| 19 |
+
}
|
uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 1024,
|
| 3 |
+
"unstable_bins": 0,
|
| 4 |
+
"reduction_bins": 0,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 32000,
|
| 8 |
+
"hl": 512,
|
| 9 |
+
"n_fft": 2048,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 1024,
|
| 12 |
+
"hpf_start": -1,
|
| 13 |
+
"res_type": "kaiser_fast"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"sr": 32000,
|
| 17 |
+
"pre_filter_start": 1000,
|
| 18 |
+
"pre_filter_stop": 1021
|
| 19 |
+
}
|
uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 1024,
|
| 3 |
+
"unstable_bins": 0,
|
| 4 |
+
"reduction_bins": 0,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 33075,
|
| 8 |
+
"hl": 384,
|
| 9 |
+
"n_fft": 2048,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 1024,
|
| 12 |
+
"hpf_start": -1,
|
| 13 |
+
"res_type": "sinc_best"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"sr": 33075,
|
| 17 |
+
"pre_filter_start": 1000,
|
| 18 |
+
"pre_filter_stop": 1021
|
| 19 |
+
}
|
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 1024,
|
| 3 |
+
"unstable_bins": 0,
|
| 4 |
+
"reduction_bins": 0,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 44100,
|
| 8 |
+
"hl": 1024,
|
| 9 |
+
"n_fft": 2048,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 1024,
|
| 12 |
+
"hpf_start": -1,
|
| 13 |
+
"res_type": "sinc_best"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"sr": 44100,
|
| 17 |
+
"pre_filter_start": 1023,
|
| 18 |
+
"pre_filter_stop": 1024
|
| 19 |
+
}
|
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 256,
|
| 3 |
+
"unstable_bins": 0,
|
| 4 |
+
"reduction_bins": 0,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 44100,
|
| 8 |
+
"hl": 256,
|
| 9 |
+
"n_fft": 512,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 256,
|
| 12 |
+
"hpf_start": -1,
|
| 13 |
+
"res_type": "sinc_best"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"sr": 44100,
|
| 17 |
+
"pre_filter_start": 256,
|
| 18 |
+
"pre_filter_stop": 256
|
| 19 |
+
}
|
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 1024,
|
| 3 |
+
"unstable_bins": 0,
|
| 4 |
+
"reduction_bins": 0,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 44100,
|
| 8 |
+
"hl": 512,
|
| 9 |
+
"n_fft": 2048,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 1024,
|
| 12 |
+
"hpf_start": -1,
|
| 13 |
+
"res_type": "sinc_best"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"sr": 44100,
|
| 17 |
+
"pre_filter_start": 1023,
|
| 18 |
+
"pre_filter_stop": 1024
|
| 19 |
+
}
|
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 1024,
|
| 3 |
+
"unstable_bins": 0,
|
| 4 |
+
"reduction_bins": 0,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 44100,
|
| 8 |
+
"hl": 512,
|
| 9 |
+
"n_fft": 2048,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 700,
|
| 12 |
+
"hpf_start": -1,
|
| 13 |
+
"res_type": "sinc_best"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"sr": 44100,
|
| 17 |
+
"pre_filter_start": 1023,
|
| 18 |
+
"pre_filter_stop": 700
|
| 19 |
+
}
|
uvr5_pack/lib_v5/modelparams/2band_32000.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 768,
|
| 3 |
+
"unstable_bins": 7,
|
| 4 |
+
"reduction_bins": 705,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 6000,
|
| 8 |
+
"hl": 66,
|
| 9 |
+
"n_fft": 512,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 240,
|
| 12 |
+
"lpf_start": 60,
|
| 13 |
+
"lpf_stop": 118,
|
| 14 |
+
"res_type": "sinc_fastest"
|
| 15 |
+
},
|
| 16 |
+
"2": {
|
| 17 |
+
"sr": 32000,
|
| 18 |
+
"hl": 352,
|
| 19 |
+
"n_fft": 1024,
|
| 20 |
+
"crop_start": 22,
|
| 21 |
+
"crop_stop": 505,
|
| 22 |
+
"hpf_start": 44,
|
| 23 |
+
"hpf_stop": 23,
|
| 24 |
+
"res_type": "sinc_medium"
|
| 25 |
+
}
|
| 26 |
+
},
|
| 27 |
+
"sr": 32000,
|
| 28 |
+
"pre_filter_start": 710,
|
| 29 |
+
"pre_filter_stop": 731
|
| 30 |
+
}
|
uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 512,
|
| 3 |
+
"unstable_bins": 7,
|
| 4 |
+
"reduction_bins": 510,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 11025,
|
| 8 |
+
"hl": 160,
|
| 9 |
+
"n_fft": 768,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 192,
|
| 12 |
+
"lpf_start": 41,
|
| 13 |
+
"lpf_stop": 139,
|
| 14 |
+
"res_type": "sinc_fastest"
|
| 15 |
+
},
|
| 16 |
+
"2": {
|
| 17 |
+
"sr": 44100,
|
| 18 |
+
"hl": 640,
|
| 19 |
+
"n_fft": 1024,
|
| 20 |
+
"crop_start": 10,
|
| 21 |
+
"crop_stop": 320,
|
| 22 |
+
"hpf_start": 47,
|
| 23 |
+
"hpf_stop": 15,
|
| 24 |
+
"res_type": "sinc_medium"
|
| 25 |
+
}
|
| 26 |
+
},
|
| 27 |
+
"sr": 44100,
|
| 28 |
+
"pre_filter_start": 510,
|
| 29 |
+
"pre_filter_stop": 512
|
| 30 |
+
}
|
uvr5_pack/lib_v5/modelparams/2band_48000.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 768,
|
| 3 |
+
"unstable_bins": 7,
|
| 4 |
+
"reduction_bins": 705,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 6000,
|
| 8 |
+
"hl": 66,
|
| 9 |
+
"n_fft": 512,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 240,
|
| 12 |
+
"lpf_start": 60,
|
| 13 |
+
"lpf_stop": 240,
|
| 14 |
+
"res_type": "sinc_fastest"
|
| 15 |
+
},
|
| 16 |
+
"2": {
|
| 17 |
+
"sr": 48000,
|
| 18 |
+
"hl": 528,
|
| 19 |
+
"n_fft": 1536,
|
| 20 |
+
"crop_start": 22,
|
| 21 |
+
"crop_stop": 505,
|
| 22 |
+
"hpf_start": 82,
|
| 23 |
+
"hpf_stop": 22,
|
| 24 |
+
"res_type": "sinc_medium"
|
| 25 |
+
}
|
| 26 |
+
},
|
| 27 |
+
"sr": 48000,
|
| 28 |
+
"pre_filter_start": 710,
|
| 29 |
+
"pre_filter_stop": 731
|
| 30 |
+
}
|
uvr5_pack/lib_v5/modelparams/3band_44100.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 768,
|
| 3 |
+
"unstable_bins": 5,
|
| 4 |
+
"reduction_bins": 733,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 11025,
|
| 8 |
+
"hl": 128,
|
| 9 |
+
"n_fft": 768,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 278,
|
| 12 |
+
"lpf_start": 28,
|
| 13 |
+
"lpf_stop": 140,
|
| 14 |
+
"res_type": "polyphase"
|
| 15 |
+
},
|
| 16 |
+
"2": {
|
| 17 |
+
"sr": 22050,
|
| 18 |
+
"hl": 256,
|
| 19 |
+
"n_fft": 768,
|
| 20 |
+
"crop_start": 14,
|
| 21 |
+
"crop_stop": 322,
|
| 22 |
+
"hpf_start": 70,
|
| 23 |
+
"hpf_stop": 14,
|
| 24 |
+
"lpf_start": 283,
|
| 25 |
+
"lpf_stop": 314,
|
| 26 |
+
"res_type": "polyphase"
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"sr": 44100,
|
| 30 |
+
"hl": 512,
|
| 31 |
+
"n_fft": 768,
|
| 32 |
+
"crop_start": 131,
|
| 33 |
+
"crop_stop": 313,
|
| 34 |
+
"hpf_start": 154,
|
| 35 |
+
"hpf_stop": 141,
|
| 36 |
+
"res_type": "sinc_medium"
|
| 37 |
+
}
|
| 38 |
+
},
|
| 39 |
+
"sr": 44100,
|
| 40 |
+
"pre_filter_start": 757,
|
| 41 |
+
"pre_filter_stop": 768
|
| 42 |
+
}
|
uvr5_pack/lib_v5/modelparams/3band_44100_mid.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mid_side": true,
|
| 3 |
+
"bins": 768,
|
| 4 |
+
"unstable_bins": 5,
|
| 5 |
+
"reduction_bins": 733,
|
| 6 |
+
"band": {
|
| 7 |
+
"1": {
|
| 8 |
+
"sr": 11025,
|
| 9 |
+
"hl": 128,
|
| 10 |
+
"n_fft": 768,
|
| 11 |
+
"crop_start": 0,
|
| 12 |
+
"crop_stop": 278,
|
| 13 |
+
"lpf_start": 28,
|
| 14 |
+
"lpf_stop": 140,
|
| 15 |
+
"res_type": "polyphase"
|
| 16 |
+
},
|
| 17 |
+
"2": {
|
| 18 |
+
"sr": 22050,
|
| 19 |
+
"hl": 256,
|
| 20 |
+
"n_fft": 768,
|
| 21 |
+
"crop_start": 14,
|
| 22 |
+
"crop_stop": 322,
|
| 23 |
+
"hpf_start": 70,
|
| 24 |
+
"hpf_stop": 14,
|
| 25 |
+
"lpf_start": 283,
|
| 26 |
+
"lpf_stop": 314,
|
| 27 |
+
"res_type": "polyphase"
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"sr": 44100,
|
| 31 |
+
"hl": 512,
|
| 32 |
+
"n_fft": 768,
|
| 33 |
+
"crop_start": 131,
|
| 34 |
+
"crop_stop": 313,
|
| 35 |
+
"hpf_start": 154,
|
| 36 |
+
"hpf_stop": 141,
|
| 37 |
+
"res_type": "sinc_medium"
|
| 38 |
+
}
|
| 39 |
+
},
|
| 40 |
+
"sr": 44100,
|
| 41 |
+
"pre_filter_start": 757,
|
| 42 |
+
"pre_filter_stop": 768
|
| 43 |
+
}
|
uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mid_side_b2": true,
|
| 3 |
+
"bins": 640,
|
| 4 |
+
"unstable_bins": 7,
|
| 5 |
+
"reduction_bins": 565,
|
| 6 |
+
"band": {
|
| 7 |
+
"1": {
|
| 8 |
+
"sr": 11025,
|
| 9 |
+
"hl": 108,
|
| 10 |
+
"n_fft": 1024,
|
| 11 |
+
"crop_start": 0,
|
| 12 |
+
"crop_stop": 187,
|
| 13 |
+
"lpf_start": 92,
|
| 14 |
+
"lpf_stop": 186,
|
| 15 |
+
"res_type": "polyphase"
|
| 16 |
+
},
|
| 17 |
+
"2": {
|
| 18 |
+
"sr": 22050,
|
| 19 |
+
"hl": 216,
|
| 20 |
+
"n_fft": 768,
|
| 21 |
+
"crop_start": 0,
|
| 22 |
+
"crop_stop": 212,
|
| 23 |
+
"hpf_start": 68,
|
| 24 |
+
"hpf_stop": 34,
|
| 25 |
+
"lpf_start": 174,
|
| 26 |
+
"lpf_stop": 209,
|
| 27 |
+
"res_type": "polyphase"
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"sr": 44100,
|
| 31 |
+
"hl": 432,
|
| 32 |
+
"n_fft": 640,
|
| 33 |
+
"crop_start": 66,
|
| 34 |
+
"crop_stop": 307,
|
| 35 |
+
"hpf_start": 86,
|
| 36 |
+
"hpf_stop": 72,
|
| 37 |
+
"res_type": "kaiser_fast"
|
| 38 |
+
}
|
| 39 |
+
},
|
| 40 |
+
"sr": 44100,
|
| 41 |
+
"pre_filter_start": 639,
|
| 42 |
+
"pre_filter_stop": 640
|
| 43 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_44100.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 768,
|
| 3 |
+
"unstable_bins": 7,
|
| 4 |
+
"reduction_bins": 668,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 11025,
|
| 8 |
+
"hl": 128,
|
| 9 |
+
"n_fft": 1024,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 186,
|
| 12 |
+
"lpf_start": 37,
|
| 13 |
+
"lpf_stop": 73,
|
| 14 |
+
"res_type": "polyphase"
|
| 15 |
+
},
|
| 16 |
+
"2": {
|
| 17 |
+
"sr": 11025,
|
| 18 |
+
"hl": 128,
|
| 19 |
+
"n_fft": 512,
|
| 20 |
+
"crop_start": 4,
|
| 21 |
+
"crop_stop": 185,
|
| 22 |
+
"hpf_start": 36,
|
| 23 |
+
"hpf_stop": 18,
|
| 24 |
+
"lpf_start": 93,
|
| 25 |
+
"lpf_stop": 185,
|
| 26 |
+
"res_type": "polyphase"
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"sr": 22050,
|
| 30 |
+
"hl": 256,
|
| 31 |
+
"n_fft": 512,
|
| 32 |
+
"crop_start": 46,
|
| 33 |
+
"crop_stop": 186,
|
| 34 |
+
"hpf_start": 93,
|
| 35 |
+
"hpf_stop": 46,
|
| 36 |
+
"lpf_start": 164,
|
| 37 |
+
"lpf_stop": 186,
|
| 38 |
+
"res_type": "polyphase"
|
| 39 |
+
},
|
| 40 |
+
"4": {
|
| 41 |
+
"sr": 44100,
|
| 42 |
+
"hl": 512,
|
| 43 |
+
"n_fft": 768,
|
| 44 |
+
"crop_start": 121,
|
| 45 |
+
"crop_stop": 382,
|
| 46 |
+
"hpf_start": 138,
|
| 47 |
+
"hpf_stop": 123,
|
| 48 |
+
"res_type": "sinc_medium"
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"sr": 44100,
|
| 52 |
+
"pre_filter_start": 740,
|
| 53 |
+
"pre_filter_stop": 768
|
| 54 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_44100_mid.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 768,
|
| 3 |
+
"unstable_bins": 7,
|
| 4 |
+
"mid_side": true,
|
| 5 |
+
"reduction_bins": 668,
|
| 6 |
+
"band": {
|
| 7 |
+
"1": {
|
| 8 |
+
"sr": 11025,
|
| 9 |
+
"hl": 128,
|
| 10 |
+
"n_fft": 1024,
|
| 11 |
+
"crop_start": 0,
|
| 12 |
+
"crop_stop": 186,
|
| 13 |
+
"lpf_start": 37,
|
| 14 |
+
"lpf_stop": 73,
|
| 15 |
+
"res_type": "polyphase"
|
| 16 |
+
},
|
| 17 |
+
"2": {
|
| 18 |
+
"sr": 11025,
|
| 19 |
+
"hl": 128,
|
| 20 |
+
"n_fft": 512,
|
| 21 |
+
"crop_start": 4,
|
| 22 |
+
"crop_stop": 185,
|
| 23 |
+
"hpf_start": 36,
|
| 24 |
+
"hpf_stop": 18,
|
| 25 |
+
"lpf_start": 93,
|
| 26 |
+
"lpf_stop": 185,
|
| 27 |
+
"res_type": "polyphase"
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"sr": 22050,
|
| 31 |
+
"hl": 256,
|
| 32 |
+
"n_fft": 512,
|
| 33 |
+
"crop_start": 46,
|
| 34 |
+
"crop_stop": 186,
|
| 35 |
+
"hpf_start": 93,
|
| 36 |
+
"hpf_stop": 46,
|
| 37 |
+
"lpf_start": 164,
|
| 38 |
+
"lpf_stop": 186,
|
| 39 |
+
"res_type": "polyphase"
|
| 40 |
+
},
|
| 41 |
+
"4": {
|
| 42 |
+
"sr": 44100,
|
| 43 |
+
"hl": 512,
|
| 44 |
+
"n_fft": 768,
|
| 45 |
+
"crop_start": 121,
|
| 46 |
+
"crop_stop": 382,
|
| 47 |
+
"hpf_start": 138,
|
| 48 |
+
"hpf_stop": 123,
|
| 49 |
+
"res_type": "sinc_medium"
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"sr": 44100,
|
| 53 |
+
"pre_filter_start": 740,
|
| 54 |
+
"pre_filter_stop": 768
|
| 55 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_44100_msb.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mid_side_b": true,
|
| 3 |
+
"bins": 768,
|
| 4 |
+
"unstable_bins": 7,
|
| 5 |
+
"reduction_bins": 668,
|
| 6 |
+
"band": {
|
| 7 |
+
"1": {
|
| 8 |
+
"sr": 11025,
|
| 9 |
+
"hl": 128,
|
| 10 |
+
"n_fft": 1024,
|
| 11 |
+
"crop_start": 0,
|
| 12 |
+
"crop_stop": 186,
|
| 13 |
+
"lpf_start": 37,
|
| 14 |
+
"lpf_stop": 73,
|
| 15 |
+
"res_type": "polyphase"
|
| 16 |
+
},
|
| 17 |
+
"2": {
|
| 18 |
+
"sr": 11025,
|
| 19 |
+
"hl": 128,
|
| 20 |
+
"n_fft": 512,
|
| 21 |
+
"crop_start": 4,
|
| 22 |
+
"crop_stop": 185,
|
| 23 |
+
"hpf_start": 36,
|
| 24 |
+
"hpf_stop": 18,
|
| 25 |
+
"lpf_start": 93,
|
| 26 |
+
"lpf_stop": 185,
|
| 27 |
+
"res_type": "polyphase"
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"sr": 22050,
|
| 31 |
+
"hl": 256,
|
| 32 |
+
"n_fft": 512,
|
| 33 |
+
"crop_start": 46,
|
| 34 |
+
"crop_stop": 186,
|
| 35 |
+
"hpf_start": 93,
|
| 36 |
+
"hpf_stop": 46,
|
| 37 |
+
"lpf_start": 164,
|
| 38 |
+
"lpf_stop": 186,
|
| 39 |
+
"res_type": "polyphase"
|
| 40 |
+
},
|
| 41 |
+
"4": {
|
| 42 |
+
"sr": 44100,
|
| 43 |
+
"hl": 512,
|
| 44 |
+
"n_fft": 768,
|
| 45 |
+
"crop_start": 121,
|
| 46 |
+
"crop_stop": 382,
|
| 47 |
+
"hpf_start": 138,
|
| 48 |
+
"hpf_stop": 123,
|
| 49 |
+
"res_type": "sinc_medium"
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"sr": 44100,
|
| 53 |
+
"pre_filter_start": 740,
|
| 54 |
+
"pre_filter_stop": 768
|
| 55 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mid_side_b": true,
|
| 3 |
+
"bins": 768,
|
| 4 |
+
"unstable_bins": 7,
|
| 5 |
+
"reduction_bins": 668,
|
| 6 |
+
"band": {
|
| 7 |
+
"1": {
|
| 8 |
+
"sr": 11025,
|
| 9 |
+
"hl": 128,
|
| 10 |
+
"n_fft": 1024,
|
| 11 |
+
"crop_start": 0,
|
| 12 |
+
"crop_stop": 186,
|
| 13 |
+
"lpf_start": 37,
|
| 14 |
+
"lpf_stop": 73,
|
| 15 |
+
"res_type": "polyphase"
|
| 16 |
+
},
|
| 17 |
+
"2": {
|
| 18 |
+
"sr": 11025,
|
| 19 |
+
"hl": 128,
|
| 20 |
+
"n_fft": 512,
|
| 21 |
+
"crop_start": 4,
|
| 22 |
+
"crop_stop": 185,
|
| 23 |
+
"hpf_start": 36,
|
| 24 |
+
"hpf_stop": 18,
|
| 25 |
+
"lpf_start": 93,
|
| 26 |
+
"lpf_stop": 185,
|
| 27 |
+
"res_type": "polyphase"
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"sr": 22050,
|
| 31 |
+
"hl": 256,
|
| 32 |
+
"n_fft": 512,
|
| 33 |
+
"crop_start": 46,
|
| 34 |
+
"crop_stop": 186,
|
| 35 |
+
"hpf_start": 93,
|
| 36 |
+
"hpf_stop": 46,
|
| 37 |
+
"lpf_start": 164,
|
| 38 |
+
"lpf_stop": 186,
|
| 39 |
+
"res_type": "polyphase"
|
| 40 |
+
},
|
| 41 |
+
"4": {
|
| 42 |
+
"sr": 44100,
|
| 43 |
+
"hl": 512,
|
| 44 |
+
"n_fft": 768,
|
| 45 |
+
"crop_start": 121,
|
| 46 |
+
"crop_stop": 382,
|
| 47 |
+
"hpf_start": 138,
|
| 48 |
+
"hpf_stop": 123,
|
| 49 |
+
"res_type": "sinc_medium"
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"sr": 44100,
|
| 53 |
+
"pre_filter_start": 740,
|
| 54 |
+
"pre_filter_stop": 768
|
| 55 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"reverse": true,
|
| 3 |
+
"bins": 768,
|
| 4 |
+
"unstable_bins": 7,
|
| 5 |
+
"reduction_bins": 668,
|
| 6 |
+
"band": {
|
| 7 |
+
"1": {
|
| 8 |
+
"sr": 11025,
|
| 9 |
+
"hl": 128,
|
| 10 |
+
"n_fft": 1024,
|
| 11 |
+
"crop_start": 0,
|
| 12 |
+
"crop_stop": 186,
|
| 13 |
+
"lpf_start": 37,
|
| 14 |
+
"lpf_stop": 73,
|
| 15 |
+
"res_type": "polyphase"
|
| 16 |
+
},
|
| 17 |
+
"2": {
|
| 18 |
+
"sr": 11025,
|
| 19 |
+
"hl": 128,
|
| 20 |
+
"n_fft": 512,
|
| 21 |
+
"crop_start": 4,
|
| 22 |
+
"crop_stop": 185,
|
| 23 |
+
"hpf_start": 36,
|
| 24 |
+
"hpf_stop": 18,
|
| 25 |
+
"lpf_start": 93,
|
| 26 |
+
"lpf_stop": 185,
|
| 27 |
+
"res_type": "polyphase"
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"sr": 22050,
|
| 31 |
+
"hl": 256,
|
| 32 |
+
"n_fft": 512,
|
| 33 |
+
"crop_start": 46,
|
| 34 |
+
"crop_stop": 186,
|
| 35 |
+
"hpf_start": 93,
|
| 36 |
+
"hpf_stop": 46,
|
| 37 |
+
"lpf_start": 164,
|
| 38 |
+
"lpf_stop": 186,
|
| 39 |
+
"res_type": "polyphase"
|
| 40 |
+
},
|
| 41 |
+
"4": {
|
| 42 |
+
"sr": 44100,
|
| 43 |
+
"hl": 512,
|
| 44 |
+
"n_fft": 768,
|
| 45 |
+
"crop_start": 121,
|
| 46 |
+
"crop_stop": 382,
|
| 47 |
+
"hpf_start": 138,
|
| 48 |
+
"hpf_stop": 123,
|
| 49 |
+
"res_type": "sinc_medium"
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"sr": 44100,
|
| 53 |
+
"pre_filter_start": 740,
|
| 54 |
+
"pre_filter_stop": 768
|
| 55 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_44100_sw.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"stereo_w": true,
|
| 3 |
+
"bins": 768,
|
| 4 |
+
"unstable_bins": 7,
|
| 5 |
+
"reduction_bins": 668,
|
| 6 |
+
"band": {
|
| 7 |
+
"1": {
|
| 8 |
+
"sr": 11025,
|
| 9 |
+
"hl": 128,
|
| 10 |
+
"n_fft": 1024,
|
| 11 |
+
"crop_start": 0,
|
| 12 |
+
"crop_stop": 186,
|
| 13 |
+
"lpf_start": 37,
|
| 14 |
+
"lpf_stop": 73,
|
| 15 |
+
"res_type": "polyphase"
|
| 16 |
+
},
|
| 17 |
+
"2": {
|
| 18 |
+
"sr": 11025,
|
| 19 |
+
"hl": 128,
|
| 20 |
+
"n_fft": 512,
|
| 21 |
+
"crop_start": 4,
|
| 22 |
+
"crop_stop": 185,
|
| 23 |
+
"hpf_start": 36,
|
| 24 |
+
"hpf_stop": 18,
|
| 25 |
+
"lpf_start": 93,
|
| 26 |
+
"lpf_stop": 185,
|
| 27 |
+
"res_type": "polyphase"
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"sr": 22050,
|
| 31 |
+
"hl": 256,
|
| 32 |
+
"n_fft": 512,
|
| 33 |
+
"crop_start": 46,
|
| 34 |
+
"crop_stop": 186,
|
| 35 |
+
"hpf_start": 93,
|
| 36 |
+
"hpf_stop": 46,
|
| 37 |
+
"lpf_start": 164,
|
| 38 |
+
"lpf_stop": 186,
|
| 39 |
+
"res_type": "polyphase"
|
| 40 |
+
},
|
| 41 |
+
"4": {
|
| 42 |
+
"sr": 44100,
|
| 43 |
+
"hl": 512,
|
| 44 |
+
"n_fft": 768,
|
| 45 |
+
"crop_start": 121,
|
| 46 |
+
"crop_stop": 382,
|
| 47 |
+
"hpf_start": 138,
|
| 48 |
+
"hpf_stop": 123,
|
| 49 |
+
"res_type": "sinc_medium"
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"sr": 44100,
|
| 53 |
+
"pre_filter_start": 740,
|
| 54 |
+
"pre_filter_stop": 768
|
| 55 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_v2.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 672,
|
| 3 |
+
"unstable_bins": 8,
|
| 4 |
+
"reduction_bins": 637,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 7350,
|
| 8 |
+
"hl": 80,
|
| 9 |
+
"n_fft": 640,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 85,
|
| 12 |
+
"lpf_start": 25,
|
| 13 |
+
"lpf_stop": 53,
|
| 14 |
+
"res_type": "polyphase"
|
| 15 |
+
},
|
| 16 |
+
"2": {
|
| 17 |
+
"sr": 7350,
|
| 18 |
+
"hl": 80,
|
| 19 |
+
"n_fft": 320,
|
| 20 |
+
"crop_start": 4,
|
| 21 |
+
"crop_stop": 87,
|
| 22 |
+
"hpf_start": 25,
|
| 23 |
+
"hpf_stop": 12,
|
| 24 |
+
"lpf_start": 31,
|
| 25 |
+
"lpf_stop": 62,
|
| 26 |
+
"res_type": "polyphase"
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"sr": 14700,
|
| 30 |
+
"hl": 160,
|
| 31 |
+
"n_fft": 512,
|
| 32 |
+
"crop_start": 17,
|
| 33 |
+
"crop_stop": 216,
|
| 34 |
+
"hpf_start": 48,
|
| 35 |
+
"hpf_stop": 24,
|
| 36 |
+
"lpf_start": 139,
|
| 37 |
+
"lpf_stop": 210,
|
| 38 |
+
"res_type": "polyphase"
|
| 39 |
+
},
|
| 40 |
+
"4": {
|
| 41 |
+
"sr": 44100,
|
| 42 |
+
"hl": 480,
|
| 43 |
+
"n_fft": 960,
|
| 44 |
+
"crop_start": 78,
|
| 45 |
+
"crop_stop": 383,
|
| 46 |
+
"hpf_start": 130,
|
| 47 |
+
"hpf_stop": 86,
|
| 48 |
+
"res_type": "kaiser_fast"
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"sr": 44100,
|
| 52 |
+
"pre_filter_start": 668,
|
| 53 |
+
"pre_filter_stop": 672
|
| 54 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_v2_sn.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 672,
|
| 3 |
+
"unstable_bins": 8,
|
| 4 |
+
"reduction_bins": 637,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 7350,
|
| 8 |
+
"hl": 80,
|
| 9 |
+
"n_fft": 640,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 85,
|
| 12 |
+
"lpf_start": 25,
|
| 13 |
+
"lpf_stop": 53,
|
| 14 |
+
"res_type": "polyphase"
|
| 15 |
+
},
|
| 16 |
+
"2": {
|
| 17 |
+
"sr": 7350,
|
| 18 |
+
"hl": 80,
|
| 19 |
+
"n_fft": 320,
|
| 20 |
+
"crop_start": 4,
|
| 21 |
+
"crop_stop": 87,
|
| 22 |
+
"hpf_start": 25,
|
| 23 |
+
"hpf_stop": 12,
|
| 24 |
+
"lpf_start": 31,
|
| 25 |
+
"lpf_stop": 62,
|
| 26 |
+
"res_type": "polyphase"
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"sr": 14700,
|
| 30 |
+
"hl": 160,
|
| 31 |
+
"n_fft": 512,
|
| 32 |
+
"crop_start": 17,
|
| 33 |
+
"crop_stop": 216,
|
| 34 |
+
"hpf_start": 48,
|
| 35 |
+
"hpf_stop": 24,
|
| 36 |
+
"lpf_start": 139,
|
| 37 |
+
"lpf_stop": 210,
|
| 38 |
+
"res_type": "polyphase"
|
| 39 |
+
},
|
| 40 |
+
"4": {
|
| 41 |
+
"sr": 44100,
|
| 42 |
+
"hl": 480,
|
| 43 |
+
"n_fft": 960,
|
| 44 |
+
"crop_start": 78,
|
| 45 |
+
"crop_stop": 383,
|
| 46 |
+
"hpf_start": 130,
|
| 47 |
+
"hpf_stop": 86,
|
| 48 |
+
"convert_channels": "stereo_n",
|
| 49 |
+
"res_type": "kaiser_fast"
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"sr": 44100,
|
| 53 |
+
"pre_filter_start": 668,
|
| 54 |
+
"pre_filter_stop": 672
|
| 55 |
+
}
|
uvr5_pack/lib_v5/modelparams/4band_v3.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bins": 672,
|
| 3 |
+
"unstable_bins": 8,
|
| 4 |
+
"reduction_bins": 530,
|
| 5 |
+
"band": {
|
| 6 |
+
"1": {
|
| 7 |
+
"sr": 7350,
|
| 8 |
+
"hl": 80,
|
| 9 |
+
"n_fft": 640,
|
| 10 |
+
"crop_start": 0,
|
| 11 |
+
"crop_stop": 85,
|
| 12 |
+
"lpf_start": 25,
|
| 13 |
+
"lpf_stop": 53,
|
| 14 |
+
"res_type": "polyphase"
|
| 15 |
+
},
|
| 16 |
+
"2": {
|
| 17 |
+
"sr": 7350,
|
| 18 |
+
"hl": 80,
|
| 19 |
+
"n_fft": 320,
|
| 20 |
+
"crop_start": 4,
|
| 21 |
+
"crop_stop": 87,
|
| 22 |
+
"hpf_start": 25,
|
| 23 |
+
"hpf_stop": 12,
|
| 24 |
+
"lpf_start": 31,
|
| 25 |
+
"lpf_stop": 62,
|
| 26 |
+
"res_type": "polyphase"
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"sr": 14700,
|
| 30 |
+
"hl": 160,
|
| 31 |
+
"n_fft": 512,
|
| 32 |
+
"crop_start": 17,
|
| 33 |
+
"crop_stop": 216,
|
| 34 |
+
"hpf_start": 48,
|
| 35 |
+
"hpf_stop": 24,
|
| 36 |
+
"lpf_start": 139,
|
| 37 |
+
"lpf_stop": 210,
|
| 38 |
+
"res_type": "polyphase"
|
| 39 |
+
},
|
| 40 |
+
"4": {
|
| 41 |
+
"sr": 44100,
|
| 42 |
+
"hl": 480,
|
| 43 |
+
"n_fft": 960,
|
| 44 |
+
"crop_start": 78,
|
| 45 |
+
"crop_stop": 383,
|
| 46 |
+
"hpf_start": 130,
|
| 47 |
+
"hpf_stop": 86,
|
| 48 |
+
"res_type": "kaiser_fast"
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"sr": 44100,
|
| 52 |
+
"pre_filter_start": 668,
|
| 53 |
+
"pre_filter_stop": 672
|
| 54 |
+
}
|
uvr5_pack/lib_v5/modelparams/ensemble.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mid_side_b2": true,
|
| 3 |
+
"bins": 1280,
|
| 4 |
+
"unstable_bins": 7,
|
| 5 |
+
"reduction_bins": 565,
|
| 6 |
+
"band": {
|
| 7 |
+
"1": {
|
| 8 |
+
"sr": 11025,
|
| 9 |
+
"hl": 108,
|
| 10 |
+
"n_fft": 2048,
|
| 11 |
+
"crop_start": 0,
|
| 12 |
+
"crop_stop": 374,
|
| 13 |
+
"lpf_start": 92,
|
| 14 |
+
"lpf_stop": 186,
|
| 15 |
+
"res_type": "polyphase"
|
| 16 |
+
},
|
| 17 |
+
"2": {
|
| 18 |
+
"sr": 22050,
|
| 19 |
+
"hl": 216,
|
| 20 |
+
"n_fft": 1536,
|
| 21 |
+
"crop_start": 0,
|
| 22 |
+
"crop_stop": 424,
|
| 23 |
+
"hpf_start": 68,
|
| 24 |
+
"hpf_stop": 34,
|
| 25 |
+
"lpf_start": 348,
|
| 26 |
+
"lpf_stop": 418,
|
| 27 |
+
"res_type": "polyphase"
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"sr": 44100,
|
| 31 |
+
"hl": 432,
|
| 32 |
+
"n_fft": 1280,
|
| 33 |
+
"crop_start": 132,
|
| 34 |
+
"crop_stop": 614,
|
| 35 |
+
"hpf_start": 172,
|
| 36 |
+
"hpf_stop": 144,
|
| 37 |
+
"res_type": "polyphase"
|
| 38 |
+
}
|
| 39 |
+
},
|
| 40 |
+
"sr": 44100,
|
| 41 |
+
"pre_filter_start": 1280,
|
| 42 |
+
"pre_filter_stop": 1280
|
| 43 |
+
}
|
uvr5_pack/lib_v5/nets.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import layers
|
| 6 |
+
from uvr5_pack.lib_v5 import spec_utils
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class BaseASPPNet(nn.Module):
|
| 10 |
+
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
| 11 |
+
super(BaseASPPNet, self).__init__()
|
| 12 |
+
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
| 13 |
+
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
| 14 |
+
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
| 15 |
+
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
| 16 |
+
|
| 17 |
+
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
| 18 |
+
|
| 19 |
+
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
| 20 |
+
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
| 21 |
+
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
| 22 |
+
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
| 23 |
+
|
| 24 |
+
def __call__(self, x):
|
| 25 |
+
h, e1 = self.enc1(x)
|
| 26 |
+
h, e2 = self.enc2(h)
|
| 27 |
+
h, e3 = self.enc3(h)
|
| 28 |
+
h, e4 = self.enc4(h)
|
| 29 |
+
|
| 30 |
+
h = self.aspp(h)
|
| 31 |
+
|
| 32 |
+
h = self.dec4(h, e4)
|
| 33 |
+
h = self.dec3(h, e3)
|
| 34 |
+
h = self.dec2(h, e2)
|
| 35 |
+
h = self.dec1(h, e1)
|
| 36 |
+
|
| 37 |
+
return h
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CascadedASPPNet(nn.Module):
|
| 41 |
+
def __init__(self, n_fft):
|
| 42 |
+
super(CascadedASPPNet, self).__init__()
|
| 43 |
+
self.stg1_low_band_net = BaseASPPNet(2, 16)
|
| 44 |
+
self.stg1_high_band_net = BaseASPPNet(2, 16)
|
| 45 |
+
|
| 46 |
+
self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
|
| 47 |
+
self.stg2_full_band_net = BaseASPPNet(8, 16)
|
| 48 |
+
|
| 49 |
+
self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
| 50 |
+
self.stg3_full_band_net = BaseASPPNet(16, 32)
|
| 51 |
+
|
| 52 |
+
self.out = nn.Conv2d(32, 2, 1, bias=False)
|
| 53 |
+
self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
|
| 54 |
+
self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
|
| 55 |
+
|
| 56 |
+
self.max_bin = n_fft // 2
|
| 57 |
+
self.output_bin = n_fft // 2 + 1
|
| 58 |
+
|
| 59 |
+
self.offset = 128
|
| 60 |
+
|
| 61 |
+
def forward(self, x, aggressiveness=None):
|
| 62 |
+
mix = x.detach()
|
| 63 |
+
x = x.clone()
|
| 64 |
+
|
| 65 |
+
x = x[:, :, : self.max_bin]
|
| 66 |
+
|
| 67 |
+
bandw = x.size()[2] // 2
|
| 68 |
+
aux1 = torch.cat(
|
| 69 |
+
[
|
| 70 |
+
self.stg1_low_band_net(x[:, :, :bandw]),
|
| 71 |
+
self.stg1_high_band_net(x[:, :, bandw:]),
|
| 72 |
+
],
|
| 73 |
+
dim=2,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
h = torch.cat([x, aux1], dim=1)
|
| 77 |
+
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
| 78 |
+
|
| 79 |
+
h = torch.cat([x, aux1, aux2], dim=1)
|
| 80 |
+
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
| 81 |
+
|
| 82 |
+
mask = torch.sigmoid(self.out(h))
|
| 83 |
+
mask = F.pad(
|
| 84 |
+
input=mask,
|
| 85 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
| 86 |
+
mode="replicate",
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
if self.training:
|
| 90 |
+
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
| 91 |
+
aux1 = F.pad(
|
| 92 |
+
input=aux1,
|
| 93 |
+
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
| 94 |
+
mode="replicate",
|
| 95 |
+
)
|
| 96 |
+
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
| 97 |
+
aux2 = F.pad(
|
| 98 |
+
input=aux2,
|
| 99 |
+
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
| 100 |
+
mode="replicate",
|
| 101 |
+
)
|
| 102 |
+
return mask * mix, aux1 * mix, aux2 * mix
|
| 103 |
+
else:
|
| 104 |
+
if aggressiveness:
|
| 105 |
+
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
| 106 |
+
mask[:, :, : aggressiveness["split_bin"]],
|
| 107 |
+
1 + aggressiveness["value"] / 3,
|
| 108 |
+
)
|
| 109 |
+
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
| 110 |
+
mask[:, :, aggressiveness["split_bin"] :],
|
| 111 |
+
1 + aggressiveness["value"],
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return mask * mix
|
| 115 |
+
|
| 116 |
+
def predict(self, x_mag, aggressiveness=None):
|
| 117 |
+
h = self.forward(x_mag, aggressiveness)
|
| 118 |
+
|
| 119 |
+
if self.offset > 0:
|
| 120 |
+
h = h[:, :, :, self.offset : -self.offset]
|
| 121 |
+
assert h.size()[3] > 0
|
| 122 |
+
|
| 123 |
+
return h
|
uvr5_pack/lib_v5/nets_123812KB.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import layers_123821KB as layers
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class BaseASPPNet(nn.Module):
|
| 9 |
+
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
| 10 |
+
super(BaseASPPNet, self).__init__()
|
| 11 |
+
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
| 12 |
+
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
| 13 |
+
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
| 14 |
+
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
| 15 |
+
|
| 16 |
+
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
| 17 |
+
|
| 18 |
+
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
| 19 |
+
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
| 20 |
+
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
| 21 |
+
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
| 22 |
+
|
| 23 |
+
def __call__(self, x):
|
| 24 |
+
h, e1 = self.enc1(x)
|
| 25 |
+
h, e2 = self.enc2(h)
|
| 26 |
+
h, e3 = self.enc3(h)
|
| 27 |
+
h, e4 = self.enc4(h)
|
| 28 |
+
|
| 29 |
+
h = self.aspp(h)
|
| 30 |
+
|
| 31 |
+
h = self.dec4(h, e4)
|
| 32 |
+
h = self.dec3(h, e3)
|
| 33 |
+
h = self.dec2(h, e2)
|
| 34 |
+
h = self.dec1(h, e1)
|
| 35 |
+
|
| 36 |
+
return h
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class CascadedASPPNet(nn.Module):
|
| 40 |
+
def __init__(self, n_fft):
|
| 41 |
+
super(CascadedASPPNet, self).__init__()
|
| 42 |
+
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
| 43 |
+
self.stg1_high_band_net = BaseASPPNet(2, 32)
|
| 44 |
+
|
| 45 |
+
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
| 46 |
+
self.stg2_full_band_net = BaseASPPNet(16, 32)
|
| 47 |
+
|
| 48 |
+
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
| 49 |
+
self.stg3_full_band_net = BaseASPPNet(32, 64)
|
| 50 |
+
|
| 51 |
+
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
| 52 |
+
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
|
| 53 |
+
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
|
| 54 |
+
|
| 55 |
+
self.max_bin = n_fft // 2
|
| 56 |
+
self.output_bin = n_fft // 2 + 1
|
| 57 |
+
|
| 58 |
+
self.offset = 128
|
| 59 |
+
|
| 60 |
+
def forward(self, x, aggressiveness=None):
|
| 61 |
+
mix = x.detach()
|
| 62 |
+
x = x.clone()
|
| 63 |
+
|
| 64 |
+
x = x[:, :, : self.max_bin]
|
| 65 |
+
|
| 66 |
+
bandw = x.size()[2] // 2
|
| 67 |
+
aux1 = torch.cat(
|
| 68 |
+
[
|
| 69 |
+
self.stg1_low_band_net(x[:, :, :bandw]),
|
| 70 |
+
self.stg1_high_band_net(x[:, :, bandw:]),
|
| 71 |
+
],
|
| 72 |
+
dim=2,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
h = torch.cat([x, aux1], dim=1)
|
| 76 |
+
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
| 77 |
+
|
| 78 |
+
h = torch.cat([x, aux1, aux2], dim=1)
|
| 79 |
+
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
| 80 |
+
|
| 81 |
+
mask = torch.sigmoid(self.out(h))
|
| 82 |
+
mask = F.pad(
|
| 83 |
+
input=mask,
|
| 84 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
| 85 |
+
mode="replicate",
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
if self.training:
|
| 89 |
+
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
| 90 |
+
aux1 = F.pad(
|
| 91 |
+
input=aux1,
|
| 92 |
+
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
| 93 |
+
mode="replicate",
|
| 94 |
+
)
|
| 95 |
+
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
| 96 |
+
aux2 = F.pad(
|
| 97 |
+
input=aux2,
|
| 98 |
+
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
| 99 |
+
mode="replicate",
|
| 100 |
+
)
|
| 101 |
+
return mask * mix, aux1 * mix, aux2 * mix
|
| 102 |
+
else:
|
| 103 |
+
if aggressiveness:
|
| 104 |
+
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
| 105 |
+
mask[:, :, : aggressiveness["split_bin"]],
|
| 106 |
+
1 + aggressiveness["value"] / 3,
|
| 107 |
+
)
|
| 108 |
+
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
| 109 |
+
mask[:, :, aggressiveness["split_bin"] :],
|
| 110 |
+
1 + aggressiveness["value"],
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return mask * mix
|
| 114 |
+
|
| 115 |
+
def predict(self, x_mag, aggressiveness=None):
|
| 116 |
+
h = self.forward(x_mag, aggressiveness)
|
| 117 |
+
|
| 118 |
+
if self.offset > 0:
|
| 119 |
+
h = h[:, :, :, self.offset : -self.offset]
|
| 120 |
+
assert h.size()[3] > 0
|
| 121 |
+
|
| 122 |
+
return h
|
uvr5_pack/lib_v5/nets_123821KB.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import layers_123821KB as layers
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class BaseASPPNet(nn.Module):
|
| 9 |
+
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
| 10 |
+
super(BaseASPPNet, self).__init__()
|
| 11 |
+
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
| 12 |
+
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
| 13 |
+
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
| 14 |
+
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
| 15 |
+
|
| 16 |
+
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
| 17 |
+
|
| 18 |
+
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
| 19 |
+
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
| 20 |
+
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
| 21 |
+
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
| 22 |
+
|
| 23 |
+
def __call__(self, x):
|
| 24 |
+
h, e1 = self.enc1(x)
|
| 25 |
+
h, e2 = self.enc2(h)
|
| 26 |
+
h, e3 = self.enc3(h)
|
| 27 |
+
h, e4 = self.enc4(h)
|
| 28 |
+
|
| 29 |
+
h = self.aspp(h)
|
| 30 |
+
|
| 31 |
+
h = self.dec4(h, e4)
|
| 32 |
+
h = self.dec3(h, e3)
|
| 33 |
+
h = self.dec2(h, e2)
|
| 34 |
+
h = self.dec1(h, e1)
|
| 35 |
+
|
| 36 |
+
return h
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class CascadedASPPNet(nn.Module):
|
| 40 |
+
def __init__(self, n_fft):
|
| 41 |
+
super(CascadedASPPNet, self).__init__()
|
| 42 |
+
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
| 43 |
+
self.stg1_high_band_net = BaseASPPNet(2, 32)
|
| 44 |
+
|
| 45 |
+
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
| 46 |
+
self.stg2_full_band_net = BaseASPPNet(16, 32)
|
| 47 |
+
|
| 48 |
+
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
| 49 |
+
self.stg3_full_band_net = BaseASPPNet(32, 64)
|
| 50 |
+
|
| 51 |
+
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
| 52 |
+
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
|
| 53 |
+
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
|
| 54 |
+
|
| 55 |
+
self.max_bin = n_fft // 2
|
| 56 |
+
self.output_bin = n_fft // 2 + 1
|
| 57 |
+
|
| 58 |
+
self.offset = 128
|
| 59 |
+
|
| 60 |
+
def forward(self, x, aggressiveness=None):
|
| 61 |
+
mix = x.detach()
|
| 62 |
+
x = x.clone()
|
| 63 |
+
|
| 64 |
+
x = x[:, :, : self.max_bin]
|
| 65 |
+
|
| 66 |
+
bandw = x.size()[2] // 2
|
| 67 |
+
aux1 = torch.cat(
|
| 68 |
+
[
|
| 69 |
+
self.stg1_low_band_net(x[:, :, :bandw]),
|
| 70 |
+
self.stg1_high_band_net(x[:, :, bandw:]),
|
| 71 |
+
],
|
| 72 |
+
dim=2,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
h = torch.cat([x, aux1], dim=1)
|
| 76 |
+
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
| 77 |
+
|
| 78 |
+
h = torch.cat([x, aux1, aux2], dim=1)
|
| 79 |
+
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
| 80 |
+
|
| 81 |
+
mask = torch.sigmoid(self.out(h))
|
| 82 |
+
mask = F.pad(
|
| 83 |
+
input=mask,
|
| 84 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
| 85 |
+
mode="replicate",
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
if self.training:
|
| 89 |
+
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
| 90 |
+
aux1 = F.pad(
|
| 91 |
+
input=aux1,
|
| 92 |
+
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
| 93 |
+
mode="replicate",
|
| 94 |
+
)
|
| 95 |
+
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
| 96 |
+
aux2 = F.pad(
|
| 97 |
+
input=aux2,
|
| 98 |
+
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
| 99 |
+
mode="replicate",
|
| 100 |
+
)
|
| 101 |
+
return mask * mix, aux1 * mix, aux2 * mix
|
| 102 |
+
else:
|
| 103 |
+
if aggressiveness:
|
| 104 |
+
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
| 105 |
+
mask[:, :, : aggressiveness["split_bin"]],
|
| 106 |
+
1 + aggressiveness["value"] / 3,
|
| 107 |
+
)
|
| 108 |
+
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
| 109 |
+
mask[:, :, aggressiveness["split_bin"] :],
|
| 110 |
+
1 + aggressiveness["value"],
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return mask * mix
|
| 114 |
+
|
| 115 |
+
def predict(self, x_mag, aggressiveness=None):
|
| 116 |
+
h = self.forward(x_mag, aggressiveness)
|
| 117 |
+
|
| 118 |
+
if self.offset > 0:
|
| 119 |
+
h = h[:, :, :, self.offset : -self.offset]
|
| 120 |
+
assert h.size()[3] > 0
|
| 121 |
+
|
| 122 |
+
return h
|
uvr5_pack/lib_v5/nets_33966KB.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import layers_33966KB as layers
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class BaseASPPNet(nn.Module):
|
| 9 |
+
def __init__(self, nin, ch, dilations=(4, 8, 16, 32)):
|
| 10 |
+
super(BaseASPPNet, self).__init__()
|
| 11 |
+
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
| 12 |
+
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
| 13 |
+
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
| 14 |
+
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
| 15 |
+
|
| 16 |
+
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
| 17 |
+
|
| 18 |
+
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
| 19 |
+
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
| 20 |
+
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
| 21 |
+
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
| 22 |
+
|
| 23 |
+
def __call__(self, x):
|
| 24 |
+
h, e1 = self.enc1(x)
|
| 25 |
+
h, e2 = self.enc2(h)
|
| 26 |
+
h, e3 = self.enc3(h)
|
| 27 |
+
h, e4 = self.enc4(h)
|
| 28 |
+
|
| 29 |
+
h = self.aspp(h)
|
| 30 |
+
|
| 31 |
+
h = self.dec4(h, e4)
|
| 32 |
+
h = self.dec3(h, e3)
|
| 33 |
+
h = self.dec2(h, e2)
|
| 34 |
+
h = self.dec1(h, e1)
|
| 35 |
+
|
| 36 |
+
return h
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class CascadedASPPNet(nn.Module):
|
| 40 |
+
def __init__(self, n_fft):
|
| 41 |
+
super(CascadedASPPNet, self).__init__()
|
| 42 |
+
self.stg1_low_band_net = BaseASPPNet(2, 16)
|
| 43 |
+
self.stg1_high_band_net = BaseASPPNet(2, 16)
|
| 44 |
+
|
| 45 |
+
self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
|
| 46 |
+
self.stg2_full_band_net = BaseASPPNet(8, 16)
|
| 47 |
+
|
| 48 |
+
self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
| 49 |
+
self.stg3_full_band_net = BaseASPPNet(16, 32)
|
| 50 |
+
|
| 51 |
+
self.out = nn.Conv2d(32, 2, 1, bias=False)
|
| 52 |
+
self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
|
| 53 |
+
self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
|
| 54 |
+
|
| 55 |
+
self.max_bin = n_fft // 2
|
| 56 |
+
self.output_bin = n_fft // 2 + 1
|
| 57 |
+
|
| 58 |
+
self.offset = 128
|
| 59 |
+
|
| 60 |
+
def forward(self, x, aggressiveness=None):
|
| 61 |
+
mix = x.detach()
|
| 62 |
+
x = x.clone()
|
| 63 |
+
|
| 64 |
+
x = x[:, :, : self.max_bin]
|
| 65 |
+
|
| 66 |
+
bandw = x.size()[2] // 2
|
| 67 |
+
aux1 = torch.cat(
|
| 68 |
+
[
|
| 69 |
+
self.stg1_low_band_net(x[:, :, :bandw]),
|
| 70 |
+
self.stg1_high_band_net(x[:, :, bandw:]),
|
| 71 |
+
],
|
| 72 |
+
dim=2,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
h = torch.cat([x, aux1], dim=1)
|
| 76 |
+
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
| 77 |
+
|
| 78 |
+
h = torch.cat([x, aux1, aux2], dim=1)
|
| 79 |
+
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
| 80 |
+
|
| 81 |
+
mask = torch.sigmoid(self.out(h))
|
| 82 |
+
mask = F.pad(
|
| 83 |
+
input=mask,
|
| 84 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
| 85 |
+
mode="replicate",
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
if self.training:
|
| 89 |
+
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
| 90 |
+
aux1 = F.pad(
|
| 91 |
+
input=aux1,
|
| 92 |
+
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
| 93 |
+
mode="replicate",
|
| 94 |
+
)
|
| 95 |
+
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
| 96 |
+
aux2 = F.pad(
|
| 97 |
+
input=aux2,
|
| 98 |
+
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
| 99 |
+
mode="replicate",
|
| 100 |
+
)
|
| 101 |
+
return mask * mix, aux1 * mix, aux2 * mix
|
| 102 |
+
else:
|
| 103 |
+
if aggressiveness:
|
| 104 |
+
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
| 105 |
+
mask[:, :, : aggressiveness["split_bin"]],
|
| 106 |
+
1 + aggressiveness["value"] / 3,
|
| 107 |
+
)
|
| 108 |
+
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
| 109 |
+
mask[:, :, aggressiveness["split_bin"] :],
|
| 110 |
+
1 + aggressiveness["value"],
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return mask * mix
|
| 114 |
+
|
| 115 |
+
def predict(self, x_mag, aggressiveness=None):
|
| 116 |
+
h = self.forward(x_mag, aggressiveness)
|
| 117 |
+
|
| 118 |
+
if self.offset > 0:
|
| 119 |
+
h = h[:, :, :, self.offset : -self.offset]
|
| 120 |
+
assert h.size()[3] > 0
|
| 121 |
+
|
| 122 |
+
return h
|
uvr5_pack/lib_v5/nets_537227KB.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from torch import nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
from uvr5_pack.lib_v5 import layers_537238KB as layers
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class BaseASPPNet(nn.Module):
|
| 10 |
+
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
| 11 |
+
super(BaseASPPNet, self).__init__()
|
| 12 |
+
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
| 13 |
+
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
| 14 |
+
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
| 15 |
+
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
| 16 |
+
|
| 17 |
+
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
| 18 |
+
|
| 19 |
+
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
| 20 |
+
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
| 21 |
+
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
| 22 |
+
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
| 23 |
+
|
| 24 |
+
def __call__(self, x):
|
| 25 |
+
h, e1 = self.enc1(x)
|
| 26 |
+
h, e2 = self.enc2(h)
|
| 27 |
+
h, e3 = self.enc3(h)
|
| 28 |
+
h, e4 = self.enc4(h)
|
| 29 |
+
|
| 30 |
+
h = self.aspp(h)
|
| 31 |
+
|
| 32 |
+
h = self.dec4(h, e4)
|
| 33 |
+
h = self.dec3(h, e3)
|
| 34 |
+
h = self.dec2(h, e2)
|
| 35 |
+
h = self.dec1(h, e1)
|
| 36 |
+
|
| 37 |
+
return h
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CascadedASPPNet(nn.Module):
|
| 41 |
+
def __init__(self, n_fft):
|
| 42 |
+
super(CascadedASPPNet, self).__init__()
|
| 43 |
+
self.stg1_low_band_net = BaseASPPNet(2, 64)
|
| 44 |
+
self.stg1_high_band_net = BaseASPPNet(2, 64)
|
| 45 |
+
|
| 46 |
+
self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
| 47 |
+
self.stg2_full_band_net = BaseASPPNet(32, 64)
|
| 48 |
+
|
| 49 |
+
self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
|
| 50 |
+
self.stg3_full_band_net = BaseASPPNet(64, 128)
|
| 51 |
+
|
| 52 |
+
self.out = nn.Conv2d(128, 2, 1, bias=False)
|
| 53 |
+
self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
|
| 54 |
+
self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
|
| 55 |
+
|
| 56 |
+
self.max_bin = n_fft // 2
|
| 57 |
+
self.output_bin = n_fft // 2 + 1
|
| 58 |
+
|
| 59 |
+
self.offset = 128
|
| 60 |
+
|
| 61 |
+
def forward(self, x, aggressiveness=None):
|
| 62 |
+
mix = x.detach()
|
| 63 |
+
x = x.clone()
|
| 64 |
+
|
| 65 |
+
x = x[:, :, : self.max_bin]
|
| 66 |
+
|
| 67 |
+
bandw = x.size()[2] // 2
|
| 68 |
+
aux1 = torch.cat(
|
| 69 |
+
[
|
| 70 |
+
self.stg1_low_band_net(x[:, :, :bandw]),
|
| 71 |
+
self.stg1_high_band_net(x[:, :, bandw:]),
|
| 72 |
+
],
|
| 73 |
+
dim=2,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
h = torch.cat([x, aux1], dim=1)
|
| 77 |
+
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
| 78 |
+
|
| 79 |
+
h = torch.cat([x, aux1, aux2], dim=1)
|
| 80 |
+
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
| 81 |
+
|
| 82 |
+
mask = torch.sigmoid(self.out(h))
|
| 83 |
+
mask = F.pad(
|
| 84 |
+
input=mask,
|
| 85 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
| 86 |
+
mode="replicate",
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
if self.training:
|
| 90 |
+
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
| 91 |
+
aux1 = F.pad(
|
| 92 |
+
input=aux1,
|
| 93 |
+
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
| 94 |
+
mode="replicate",
|
| 95 |
+
)
|
| 96 |
+
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
| 97 |
+
aux2 = F.pad(
|
| 98 |
+
input=aux2,
|
| 99 |
+
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
| 100 |
+
mode="replicate",
|
| 101 |
+
)
|
| 102 |
+
return mask * mix, aux1 * mix, aux2 * mix
|
| 103 |
+
else:
|
| 104 |
+
if aggressiveness:
|
| 105 |
+
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
| 106 |
+
mask[:, :, : aggressiveness["split_bin"]],
|
| 107 |
+
1 + aggressiveness["value"] / 3,
|
| 108 |
+
)
|
| 109 |
+
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
| 110 |
+
mask[:, :, aggressiveness["split_bin"] :],
|
| 111 |
+
1 + aggressiveness["value"],
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return mask * mix
|
| 115 |
+
|
| 116 |
+
def predict(self, x_mag, aggressiveness=None):
|
| 117 |
+
h = self.forward(x_mag, aggressiveness)
|
| 118 |
+
|
| 119 |
+
if self.offset > 0:
|
| 120 |
+
h = h[:, :, :, self.offset : -self.offset]
|
| 121 |
+
assert h.size()[3] > 0
|
| 122 |
+
|
| 123 |
+
return h
|
uvr5_pack/lib_v5/nets_537238KB.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from torch import nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
from uvr5_pack.lib_v5 import layers_537238KB as layers
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class BaseASPPNet(nn.Module):
|
| 10 |
+
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
| 11 |
+
super(BaseASPPNet, self).__init__()
|
| 12 |
+
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
| 13 |
+
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
| 14 |
+
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
| 15 |
+
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
| 16 |
+
|
| 17 |
+
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
| 18 |
+
|
| 19 |
+
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
| 20 |
+
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
| 21 |
+
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
| 22 |
+
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
| 23 |
+
|
| 24 |
+
def __call__(self, x):
|
| 25 |
+
h, e1 = self.enc1(x)
|
| 26 |
+
h, e2 = self.enc2(h)
|
| 27 |
+
h, e3 = self.enc3(h)
|
| 28 |
+
h, e4 = self.enc4(h)
|
| 29 |
+
|
| 30 |
+
h = self.aspp(h)
|
| 31 |
+
|
| 32 |
+
h = self.dec4(h, e4)
|
| 33 |
+
h = self.dec3(h, e3)
|
| 34 |
+
h = self.dec2(h, e2)
|
| 35 |
+
h = self.dec1(h, e1)
|
| 36 |
+
|
| 37 |
+
return h
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class CascadedASPPNet(nn.Module):
|
| 41 |
+
def __init__(self, n_fft):
|
| 42 |
+
super(CascadedASPPNet, self).__init__()
|
| 43 |
+
self.stg1_low_band_net = BaseASPPNet(2, 64)
|
| 44 |
+
self.stg1_high_band_net = BaseASPPNet(2, 64)
|
| 45 |
+
|
| 46 |
+
self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
| 47 |
+
self.stg2_full_band_net = BaseASPPNet(32, 64)
|
| 48 |
+
|
| 49 |
+
self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
|
| 50 |
+
self.stg3_full_band_net = BaseASPPNet(64, 128)
|
| 51 |
+
|
| 52 |
+
self.out = nn.Conv2d(128, 2, 1, bias=False)
|
| 53 |
+
self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
|
| 54 |
+
self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
|
| 55 |
+
|
| 56 |
+
self.max_bin = n_fft // 2
|
| 57 |
+
self.output_bin = n_fft // 2 + 1
|
| 58 |
+
|
| 59 |
+
self.offset = 128
|
| 60 |
+
|
| 61 |
+
def forward(self, x, aggressiveness=None):
|
| 62 |
+
mix = x.detach()
|
| 63 |
+
x = x.clone()
|
| 64 |
+
|
| 65 |
+
x = x[:, :, : self.max_bin]
|
| 66 |
+
|
| 67 |
+
bandw = x.size()[2] // 2
|
| 68 |
+
aux1 = torch.cat(
|
| 69 |
+
[
|
| 70 |
+
self.stg1_low_band_net(x[:, :, :bandw]),
|
| 71 |
+
self.stg1_high_band_net(x[:, :, bandw:]),
|
| 72 |
+
],
|
| 73 |
+
dim=2,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
h = torch.cat([x, aux1], dim=1)
|
| 77 |
+
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
| 78 |
+
|
| 79 |
+
h = torch.cat([x, aux1, aux2], dim=1)
|
| 80 |
+
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
| 81 |
+
|
| 82 |
+
mask = torch.sigmoid(self.out(h))
|
| 83 |
+
mask = F.pad(
|
| 84 |
+
input=mask,
|
| 85 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
| 86 |
+
mode="replicate",
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
if self.training:
|
| 90 |
+
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
| 91 |
+
aux1 = F.pad(
|
| 92 |
+
input=aux1,
|
| 93 |
+
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
| 94 |
+
mode="replicate",
|
| 95 |
+
)
|
| 96 |
+
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
| 97 |
+
aux2 = F.pad(
|
| 98 |
+
input=aux2,
|
| 99 |
+
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
| 100 |
+
mode="replicate",
|
| 101 |
+
)
|
| 102 |
+
return mask * mix, aux1 * mix, aux2 * mix
|
| 103 |
+
else:
|
| 104 |
+
if aggressiveness:
|
| 105 |
+
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
| 106 |
+
mask[:, :, : aggressiveness["split_bin"]],
|
| 107 |
+
1 + aggressiveness["value"] / 3,
|
| 108 |
+
)
|
| 109 |
+
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
| 110 |
+
mask[:, :, aggressiveness["split_bin"] :],
|
| 111 |
+
1 + aggressiveness["value"],
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return mask * mix
|
| 115 |
+
|
| 116 |
+
def predict(self, x_mag, aggressiveness=None):
|
| 117 |
+
h = self.forward(x_mag, aggressiveness)
|
| 118 |
+
|
| 119 |
+
if self.offset > 0:
|
| 120 |
+
h = h[:, :, :, self.offset : -self.offset]
|
| 121 |
+
assert h.size()[3] > 0
|
| 122 |
+
|
| 123 |
+
return h
|
uvr5_pack/lib_v5/nets_61968KB.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from uvr5_pack.lib_v5 import layers_123821KB as layers
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class BaseASPPNet(nn.Module):
|
| 9 |
+
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
| 10 |
+
super(BaseASPPNet, self).__init__()
|
| 11 |
+
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
| 12 |
+
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
| 13 |
+
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
| 14 |
+
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
| 15 |
+
|
| 16 |
+
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
| 17 |
+
|
| 18 |
+
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
| 19 |
+
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
| 20 |
+
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
| 21 |
+
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
| 22 |
+
|
| 23 |
+
def __call__(self, x):
|
| 24 |
+
h, e1 = self.enc1(x)
|
| 25 |
+
h, e2 = self.enc2(h)
|
| 26 |
+
h, e3 = self.enc3(h)
|
| 27 |
+
h, e4 = self.enc4(h)
|
| 28 |
+
|
| 29 |
+
h = self.aspp(h)
|
| 30 |
+
|
| 31 |
+
h = self.dec4(h, e4)
|
| 32 |
+
h = self.dec3(h, e3)
|
| 33 |
+
h = self.dec2(h, e2)
|
| 34 |
+
h = self.dec1(h, e1)
|
| 35 |
+
|
| 36 |
+
return h
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class CascadedASPPNet(nn.Module):
|
| 40 |
+
def __init__(self, n_fft):
|
| 41 |
+
super(CascadedASPPNet, self).__init__()
|
| 42 |
+
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
| 43 |
+
self.stg1_high_band_net = BaseASPPNet(2, 32)
|
| 44 |
+
|
| 45 |
+
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
| 46 |
+
self.stg2_full_band_net = BaseASPPNet(16, 32)
|
| 47 |
+
|
| 48 |
+
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
| 49 |
+
self.stg3_full_band_net = BaseASPPNet(32, 64)
|
| 50 |
+
|
| 51 |
+
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
| 52 |
+
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
|
| 53 |
+
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
|
| 54 |
+
|
| 55 |
+
self.max_bin = n_fft // 2
|
| 56 |
+
self.output_bin = n_fft // 2 + 1
|
| 57 |
+
|
| 58 |
+
self.offset = 128
|
| 59 |
+
|
| 60 |
+
def forward(self, x, aggressiveness=None):
|
| 61 |
+
mix = x.detach()
|
| 62 |
+
x = x.clone()
|
| 63 |
+
|
| 64 |
+
x = x[:, :, : self.max_bin]
|
| 65 |
+
|
| 66 |
+
bandw = x.size()[2] // 2
|
| 67 |
+
aux1 = torch.cat(
|
| 68 |
+
[
|
| 69 |
+
self.stg1_low_band_net(x[:, :, :bandw]),
|
| 70 |
+
self.stg1_high_band_net(x[:, :, bandw:]),
|
| 71 |
+
],
|
| 72 |
+
dim=2,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
h = torch.cat([x, aux1], dim=1)
|
| 76 |
+
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
| 77 |
+
|
| 78 |
+
h = torch.cat([x, aux1, aux2], dim=1)
|
| 79 |
+
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
| 80 |
+
|
| 81 |
+
mask = torch.sigmoid(self.out(h))
|
| 82 |
+
mask = F.pad(
|
| 83 |
+
input=mask,
|
| 84 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
| 85 |
+
mode="replicate",
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
if self.training:
|
| 89 |
+
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
| 90 |
+
aux1 = F.pad(
|
| 91 |
+
input=aux1,
|
| 92 |
+
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
| 93 |
+
mode="replicate",
|
| 94 |
+
)
|
| 95 |
+
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
| 96 |
+
aux2 = F.pad(
|
| 97 |
+
input=aux2,
|
| 98 |
+
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
| 99 |
+
mode="replicate",
|
| 100 |
+
)
|
| 101 |
+
return mask * mix, aux1 * mix, aux2 * mix
|
| 102 |
+
else:
|
| 103 |
+
if aggressiveness:
|
| 104 |
+
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
| 105 |
+
mask[:, :, : aggressiveness["split_bin"]],
|
| 106 |
+
1 + aggressiveness["value"] / 3,
|
| 107 |
+
)
|
| 108 |
+
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
| 109 |
+
mask[:, :, aggressiveness["split_bin"] :],
|
| 110 |
+
1 + aggressiveness["value"],
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return mask * mix
|
| 114 |
+
|
| 115 |
+
def predict(self, x_mag, aggressiveness=None):
|
| 116 |
+
h = self.forward(x_mag, aggressiveness)
|
| 117 |
+
|
| 118 |
+
if self.offset > 0:
|
| 119 |
+
h = h[:, :, :, self.offset : -self.offset]
|
| 120 |
+
assert h.size()[3] > 0
|
| 121 |
+
|
| 122 |
+
return h
|
uvr5_pack/lib_v5/nets_new.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from uvr5_pack.lib_v5 import layers_new as layers
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BaseNet(nn.Module):
|
| 8 |
+
def __init__(
|
| 9 |
+
self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))
|
| 10 |
+
):
|
| 11 |
+
super(BaseNet, self).__init__()
|
| 12 |
+
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
|
| 13 |
+
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
|
| 14 |
+
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
|
| 15 |
+
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
|
| 16 |
+
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
|
| 17 |
+
|
| 18 |
+
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
|
| 19 |
+
|
| 20 |
+
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
|
| 21 |
+
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
|
| 22 |
+
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
|
| 23 |
+
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
|
| 24 |
+
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
|
| 25 |
+
|
| 26 |
+
def __call__(self, x):
|
| 27 |
+
e1 = self.enc1(x)
|
| 28 |
+
e2 = self.enc2(e1)
|
| 29 |
+
e3 = self.enc3(e2)
|
| 30 |
+
e4 = self.enc4(e3)
|
| 31 |
+
e5 = self.enc5(e4)
|
| 32 |
+
|
| 33 |
+
h = self.aspp(e5)
|
| 34 |
+
|
| 35 |
+
h = self.dec4(h, e4)
|
| 36 |
+
h = self.dec3(h, e3)
|
| 37 |
+
h = self.dec2(h, e2)
|
| 38 |
+
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
|
| 39 |
+
h = self.dec1(h, e1)
|
| 40 |
+
|
| 41 |
+
return h
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class CascadedNet(nn.Module):
|
| 45 |
+
def __init__(self, n_fft, nout=32, nout_lstm=128):
|
| 46 |
+
super(CascadedNet, self).__init__()
|
| 47 |
+
|
| 48 |
+
self.max_bin = n_fft // 2
|
| 49 |
+
self.output_bin = n_fft // 2 + 1
|
| 50 |
+
self.nin_lstm = self.max_bin // 2
|
| 51 |
+
self.offset = 64
|
| 52 |
+
|
| 53 |
+
self.stg1_low_band_net = nn.Sequential(
|
| 54 |
+
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
|
| 55 |
+
layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0),
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
self.stg1_high_band_net = BaseNet(
|
| 59 |
+
2, nout // 4, self.nin_lstm // 2, nout_lstm // 2
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
self.stg2_low_band_net = nn.Sequential(
|
| 63 |
+
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
|
| 64 |
+
layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0),
|
| 65 |
+
)
|
| 66 |
+
self.stg2_high_band_net = BaseNet(
|
| 67 |
+
nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
self.stg3_full_band_net = BaseNet(
|
| 71 |
+
3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
self.out = nn.Conv2d(nout, 2, 1, bias=False)
|
| 75 |
+
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
|
| 76 |
+
|
| 77 |
+
def forward(self, x):
|
| 78 |
+
x = x[:, :, : self.max_bin]
|
| 79 |
+
|
| 80 |
+
bandw = x.size()[2] // 2
|
| 81 |
+
l1_in = x[:, :, :bandw]
|
| 82 |
+
h1_in = x[:, :, bandw:]
|
| 83 |
+
l1 = self.stg1_low_band_net(l1_in)
|
| 84 |
+
h1 = self.stg1_high_band_net(h1_in)
|
| 85 |
+
aux1 = torch.cat([l1, h1], dim=2)
|
| 86 |
+
|
| 87 |
+
l2_in = torch.cat([l1_in, l1], dim=1)
|
| 88 |
+
h2_in = torch.cat([h1_in, h1], dim=1)
|
| 89 |
+
l2 = self.stg2_low_band_net(l2_in)
|
| 90 |
+
h2 = self.stg2_high_band_net(h2_in)
|
| 91 |
+
aux2 = torch.cat([l2, h2], dim=2)
|
| 92 |
+
|
| 93 |
+
f3_in = torch.cat([x, aux1, aux2], dim=1)
|
| 94 |
+
f3 = self.stg3_full_band_net(f3_in)
|
| 95 |
+
|
| 96 |
+
mask = torch.sigmoid(self.out(f3))
|
| 97 |
+
mask = F.pad(
|
| 98 |
+
input=mask,
|
| 99 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
| 100 |
+
mode="replicate",
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
if self.training:
|
| 104 |
+
aux = torch.cat([aux1, aux2], dim=1)
|
| 105 |
+
aux = torch.sigmoid(self.aux_out(aux))
|
| 106 |
+
aux = F.pad(
|
| 107 |
+
input=aux,
|
| 108 |
+
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
|
| 109 |
+
mode="replicate",
|
| 110 |
+
)
|
| 111 |
+
return mask, aux
|
| 112 |
+
else:
|
| 113 |
+
return mask
|
| 114 |
+
|
| 115 |
+
def predict_mask(self, x):
|
| 116 |
+
mask = self.forward(x)
|
| 117 |
+
|
| 118 |
+
if self.offset > 0:
|
| 119 |
+
mask = mask[:, :, :, self.offset : -self.offset]
|
| 120 |
+
assert mask.size()[3] > 0
|
| 121 |
+
|
| 122 |
+
return mask
|
| 123 |
+
|
| 124 |
+
def predict(self, x, aggressiveness=None):
|
| 125 |
+
mask = self.forward(x)
|
| 126 |
+
pred_mag = x * mask
|
| 127 |
+
|
| 128 |
+
if self.offset > 0:
|
| 129 |
+
pred_mag = pred_mag[:, :, :, self.offset : -self.offset]
|
| 130 |
+
assert pred_mag.size()[3] > 0
|
| 131 |
+
|
| 132 |
+
return pred_mag
|
uvr5_pack/lib_v5/spec_utils.py
ADDED
|
@@ -0,0 +1,667 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, librosa
|
| 2 |
+
import numpy as np
|
| 3 |
+
import soundfile as sf
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import json, math, hashlib
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def crop_center(h1, h2):
|
| 9 |
+
h1_shape = h1.size()
|
| 10 |
+
h2_shape = h2.size()
|
| 11 |
+
|
| 12 |
+
if h1_shape[3] == h2_shape[3]:
|
| 13 |
+
return h1
|
| 14 |
+
elif h1_shape[3] < h2_shape[3]:
|
| 15 |
+
raise ValueError("h1_shape[3] must be greater than h2_shape[3]")
|
| 16 |
+
|
| 17 |
+
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
|
| 18 |
+
# e_freq = s_freq + h1_shape[2]
|
| 19 |
+
s_time = (h1_shape[3] - h2_shape[3]) // 2
|
| 20 |
+
e_time = s_time + h2_shape[3]
|
| 21 |
+
h1 = h1[:, :, :, s_time:e_time]
|
| 22 |
+
|
| 23 |
+
return h1
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def wave_to_spectrogram(
|
| 27 |
+
wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False
|
| 28 |
+
):
|
| 29 |
+
if reverse:
|
| 30 |
+
wave_left = np.flip(np.asfortranarray(wave[0]))
|
| 31 |
+
wave_right = np.flip(np.asfortranarray(wave[1]))
|
| 32 |
+
elif mid_side:
|
| 33 |
+
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
| 34 |
+
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
| 35 |
+
elif mid_side_b2:
|
| 36 |
+
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
|
| 37 |
+
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
|
| 38 |
+
else:
|
| 39 |
+
wave_left = np.asfortranarray(wave[0])
|
| 40 |
+
wave_right = np.asfortranarray(wave[1])
|
| 41 |
+
|
| 42 |
+
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
|
| 43 |
+
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
| 44 |
+
|
| 45 |
+
spec = np.asfortranarray([spec_left, spec_right])
|
| 46 |
+
|
| 47 |
+
return spec
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def wave_to_spectrogram_mt(
|
| 51 |
+
wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False
|
| 52 |
+
):
|
| 53 |
+
import threading
|
| 54 |
+
|
| 55 |
+
if reverse:
|
| 56 |
+
wave_left = np.flip(np.asfortranarray(wave[0]))
|
| 57 |
+
wave_right = np.flip(np.asfortranarray(wave[1]))
|
| 58 |
+
elif mid_side:
|
| 59 |
+
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
| 60 |
+
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
| 61 |
+
elif mid_side_b2:
|
| 62 |
+
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
|
| 63 |
+
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
|
| 64 |
+
else:
|
| 65 |
+
wave_left = np.asfortranarray(wave[0])
|
| 66 |
+
wave_right = np.asfortranarray(wave[1])
|
| 67 |
+
|
| 68 |
+
def run_thread(**kwargs):
|
| 69 |
+
global spec_left
|
| 70 |
+
spec_left = librosa.stft(**kwargs)
|
| 71 |
+
|
| 72 |
+
thread = threading.Thread(
|
| 73 |
+
target=run_thread,
|
| 74 |
+
kwargs={"y": wave_left, "n_fft": n_fft, "hop_length": hop_length},
|
| 75 |
+
)
|
| 76 |
+
thread.start()
|
| 77 |
+
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
| 78 |
+
thread.join()
|
| 79 |
+
|
| 80 |
+
spec = np.asfortranarray([spec_left, spec_right])
|
| 81 |
+
|
| 82 |
+
return spec
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def combine_spectrograms(specs, mp):
|
| 86 |
+
l = min([specs[i].shape[2] for i in specs])
|
| 87 |
+
spec_c = np.zeros(shape=(2, mp.param["bins"] + 1, l), dtype=np.complex64)
|
| 88 |
+
offset = 0
|
| 89 |
+
bands_n = len(mp.param["band"])
|
| 90 |
+
|
| 91 |
+
for d in range(1, bands_n + 1):
|
| 92 |
+
h = mp.param["band"][d]["crop_stop"] - mp.param["band"][d]["crop_start"]
|
| 93 |
+
spec_c[:, offset : offset + h, :l] = specs[d][
|
| 94 |
+
:, mp.param["band"][d]["crop_start"] : mp.param["band"][d]["crop_stop"], :l
|
| 95 |
+
]
|
| 96 |
+
offset += h
|
| 97 |
+
|
| 98 |
+
if offset > mp.param["bins"]:
|
| 99 |
+
raise ValueError("Too much bins")
|
| 100 |
+
|
| 101 |
+
# lowpass fiter
|
| 102 |
+
if (
|
| 103 |
+
mp.param["pre_filter_start"] > 0
|
| 104 |
+
): # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
|
| 105 |
+
if bands_n == 1:
|
| 106 |
+
spec_c = fft_lp_filter(
|
| 107 |
+
spec_c, mp.param["pre_filter_start"], mp.param["pre_filter_stop"]
|
| 108 |
+
)
|
| 109 |
+
else:
|
| 110 |
+
gp = 1
|
| 111 |
+
for b in range(
|
| 112 |
+
mp.param["pre_filter_start"] + 1, mp.param["pre_filter_stop"]
|
| 113 |
+
):
|
| 114 |
+
g = math.pow(
|
| 115 |
+
10, -(b - mp.param["pre_filter_start"]) * (3.5 - gp) / 20.0
|
| 116 |
+
)
|
| 117 |
+
gp = g
|
| 118 |
+
spec_c[:, b, :] *= g
|
| 119 |
+
|
| 120 |
+
return np.asfortranarray(spec_c)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def spectrogram_to_image(spec, mode="magnitude"):
|
| 124 |
+
if mode == "magnitude":
|
| 125 |
+
if np.iscomplexobj(spec):
|
| 126 |
+
y = np.abs(spec)
|
| 127 |
+
else:
|
| 128 |
+
y = spec
|
| 129 |
+
y = np.log10(y**2 + 1e-8)
|
| 130 |
+
elif mode == "phase":
|
| 131 |
+
if np.iscomplexobj(spec):
|
| 132 |
+
y = np.angle(spec)
|
| 133 |
+
else:
|
| 134 |
+
y = spec
|
| 135 |
+
|
| 136 |
+
y -= y.min()
|
| 137 |
+
y *= 255 / y.max()
|
| 138 |
+
img = np.uint8(y)
|
| 139 |
+
|
| 140 |
+
if y.ndim == 3:
|
| 141 |
+
img = img.transpose(1, 2, 0)
|
| 142 |
+
img = np.concatenate([np.max(img, axis=2, keepdims=True), img], axis=2)
|
| 143 |
+
|
| 144 |
+
return img
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def reduce_vocal_aggressively(X, y, softmask):
|
| 148 |
+
v = X - y
|
| 149 |
+
y_mag_tmp = np.abs(y)
|
| 150 |
+
v_mag_tmp = np.abs(v)
|
| 151 |
+
|
| 152 |
+
v_mask = v_mag_tmp > y_mag_tmp
|
| 153 |
+
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
|
| 154 |
+
|
| 155 |
+
return y_mag * np.exp(1.0j * np.angle(y))
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
|
| 159 |
+
if min_range < fade_size * 2:
|
| 160 |
+
raise ValueError("min_range must be >= fade_area * 2")
|
| 161 |
+
|
| 162 |
+
mag = mag.copy()
|
| 163 |
+
|
| 164 |
+
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
|
| 165 |
+
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
| 166 |
+
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
| 167 |
+
uninformative = np.where(ends - starts > min_range)[0]
|
| 168 |
+
if len(uninformative) > 0:
|
| 169 |
+
starts = starts[uninformative]
|
| 170 |
+
ends = ends[uninformative]
|
| 171 |
+
old_e = None
|
| 172 |
+
for s, e in zip(starts, ends):
|
| 173 |
+
if old_e is not None and s - old_e < fade_size:
|
| 174 |
+
s = old_e - fade_size * 2
|
| 175 |
+
|
| 176 |
+
if s != 0:
|
| 177 |
+
weight = np.linspace(0, 1, fade_size)
|
| 178 |
+
mag[:, :, s : s + fade_size] += weight * ref[:, :, s : s + fade_size]
|
| 179 |
+
else:
|
| 180 |
+
s -= fade_size
|
| 181 |
+
|
| 182 |
+
if e != mag.shape[2]:
|
| 183 |
+
weight = np.linspace(1, 0, fade_size)
|
| 184 |
+
mag[:, :, e - fade_size : e] += weight * ref[:, :, e - fade_size : e]
|
| 185 |
+
else:
|
| 186 |
+
e += fade_size
|
| 187 |
+
|
| 188 |
+
mag[:, :, s + fade_size : e - fade_size] += ref[
|
| 189 |
+
:, :, s + fade_size : e - fade_size
|
| 190 |
+
]
|
| 191 |
+
old_e = e
|
| 192 |
+
|
| 193 |
+
return mag
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def align_wave_head_and_tail(a, b):
|
| 197 |
+
l = min([a[0].size, b[0].size])
|
| 198 |
+
|
| 199 |
+
return a[:l, :l], b[:l, :l]
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def cache_or_load(mix_path, inst_path, mp):
|
| 203 |
+
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
|
| 204 |
+
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
|
| 205 |
+
|
| 206 |
+
cache_dir = "mph{}".format(
|
| 207 |
+
hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode("utf-8")).hexdigest()
|
| 208 |
+
)
|
| 209 |
+
mix_cache_dir = os.path.join("cache", cache_dir)
|
| 210 |
+
inst_cache_dir = os.path.join("cache", cache_dir)
|
| 211 |
+
|
| 212 |
+
os.makedirs(mix_cache_dir, exist_ok=True)
|
| 213 |
+
os.makedirs(inst_cache_dir, exist_ok=True)
|
| 214 |
+
|
| 215 |
+
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + ".npy")
|
| 216 |
+
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + ".npy")
|
| 217 |
+
|
| 218 |
+
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
|
| 219 |
+
X_spec_m = np.load(mix_cache_path)
|
| 220 |
+
y_spec_m = np.load(inst_cache_path)
|
| 221 |
+
else:
|
| 222 |
+
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
| 223 |
+
|
| 224 |
+
for d in range(len(mp.param["band"]), 0, -1):
|
| 225 |
+
bp = mp.param["band"][d]
|
| 226 |
+
|
| 227 |
+
if d == len(mp.param["band"]): # high-end band
|
| 228 |
+
X_wave[d], _ = librosa.load(
|
| 229 |
+
mix_path, bp["sr"], False, dtype=np.float32, res_type=bp["res_type"]
|
| 230 |
+
)
|
| 231 |
+
y_wave[d], _ = librosa.load(
|
| 232 |
+
inst_path,
|
| 233 |
+
bp["sr"],
|
| 234 |
+
False,
|
| 235 |
+
dtype=np.float32,
|
| 236 |
+
res_type=bp["res_type"],
|
| 237 |
+
)
|
| 238 |
+
else: # lower bands
|
| 239 |
+
X_wave[d] = librosa.resample(
|
| 240 |
+
X_wave[d + 1],
|
| 241 |
+
mp.param["band"][d + 1]["sr"],
|
| 242 |
+
bp["sr"],
|
| 243 |
+
res_type=bp["res_type"],
|
| 244 |
+
)
|
| 245 |
+
y_wave[d] = librosa.resample(
|
| 246 |
+
y_wave[d + 1],
|
| 247 |
+
mp.param["band"][d + 1]["sr"],
|
| 248 |
+
bp["sr"],
|
| 249 |
+
res_type=bp["res_type"],
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
X_wave[d], y_wave[d] = align_wave_head_and_tail(X_wave[d], y_wave[d])
|
| 253 |
+
|
| 254 |
+
X_spec_s[d] = wave_to_spectrogram(
|
| 255 |
+
X_wave[d],
|
| 256 |
+
bp["hl"],
|
| 257 |
+
bp["n_fft"],
|
| 258 |
+
mp.param["mid_side"],
|
| 259 |
+
mp.param["mid_side_b2"],
|
| 260 |
+
mp.param["reverse"],
|
| 261 |
+
)
|
| 262 |
+
y_spec_s[d] = wave_to_spectrogram(
|
| 263 |
+
y_wave[d],
|
| 264 |
+
bp["hl"],
|
| 265 |
+
bp["n_fft"],
|
| 266 |
+
mp.param["mid_side"],
|
| 267 |
+
mp.param["mid_side_b2"],
|
| 268 |
+
mp.param["reverse"],
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
del X_wave, y_wave
|
| 272 |
+
|
| 273 |
+
X_spec_m = combine_spectrograms(X_spec_s, mp)
|
| 274 |
+
y_spec_m = combine_spectrograms(y_spec_s, mp)
|
| 275 |
+
|
| 276 |
+
if X_spec_m.shape != y_spec_m.shape:
|
| 277 |
+
raise ValueError("The combined spectrograms are different: " + mix_path)
|
| 278 |
+
|
| 279 |
+
_, ext = os.path.splitext(mix_path)
|
| 280 |
+
|
| 281 |
+
np.save(mix_cache_path, X_spec_m)
|
| 282 |
+
np.save(inst_cache_path, y_spec_m)
|
| 283 |
+
|
| 284 |
+
return X_spec_m, y_spec_m
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse):
|
| 288 |
+
spec_left = np.asfortranarray(spec[0])
|
| 289 |
+
spec_right = np.asfortranarray(spec[1])
|
| 290 |
+
|
| 291 |
+
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
| 292 |
+
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
| 293 |
+
|
| 294 |
+
if reverse:
|
| 295 |
+
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
| 296 |
+
elif mid_side:
|
| 297 |
+
return np.asfortranarray(
|
| 298 |
+
[np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]
|
| 299 |
+
)
|
| 300 |
+
elif mid_side_b2:
|
| 301 |
+
return np.asfortranarray(
|
| 302 |
+
[
|
| 303 |
+
np.add(wave_right / 1.25, 0.4 * wave_left),
|
| 304 |
+
np.subtract(wave_left / 1.25, 0.4 * wave_right),
|
| 305 |
+
]
|
| 306 |
+
)
|
| 307 |
+
else:
|
| 308 |
+
return np.asfortranarray([wave_left, wave_right])
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
|
| 312 |
+
import threading
|
| 313 |
+
|
| 314 |
+
spec_left = np.asfortranarray(spec[0])
|
| 315 |
+
spec_right = np.asfortranarray(spec[1])
|
| 316 |
+
|
| 317 |
+
def run_thread(**kwargs):
|
| 318 |
+
global wave_left
|
| 319 |
+
wave_left = librosa.istft(**kwargs)
|
| 320 |
+
|
| 321 |
+
thread = threading.Thread(
|
| 322 |
+
target=run_thread, kwargs={"stft_matrix": spec_left, "hop_length": hop_length}
|
| 323 |
+
)
|
| 324 |
+
thread.start()
|
| 325 |
+
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
| 326 |
+
thread.join()
|
| 327 |
+
|
| 328 |
+
if reverse:
|
| 329 |
+
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
| 330 |
+
elif mid_side:
|
| 331 |
+
return np.asfortranarray(
|
| 332 |
+
[np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]
|
| 333 |
+
)
|
| 334 |
+
elif mid_side_b2:
|
| 335 |
+
return np.asfortranarray(
|
| 336 |
+
[
|
| 337 |
+
np.add(wave_right / 1.25, 0.4 * wave_left),
|
| 338 |
+
np.subtract(wave_left / 1.25, 0.4 * wave_right),
|
| 339 |
+
]
|
| 340 |
+
)
|
| 341 |
+
else:
|
| 342 |
+
return np.asfortranarray([wave_left, wave_right])
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
|
| 346 |
+
wave_band = {}
|
| 347 |
+
bands_n = len(mp.param["band"])
|
| 348 |
+
offset = 0
|
| 349 |
+
|
| 350 |
+
for d in range(1, bands_n + 1):
|
| 351 |
+
bp = mp.param["band"][d]
|
| 352 |
+
spec_s = np.ndarray(
|
| 353 |
+
shape=(2, bp["n_fft"] // 2 + 1, spec_m.shape[2]), dtype=complex
|
| 354 |
+
)
|
| 355 |
+
h = bp["crop_stop"] - bp["crop_start"]
|
| 356 |
+
spec_s[:, bp["crop_start"] : bp["crop_stop"], :] = spec_m[
|
| 357 |
+
:, offset : offset + h, :
|
| 358 |
+
]
|
| 359 |
+
|
| 360 |
+
offset += h
|
| 361 |
+
if d == bands_n: # higher
|
| 362 |
+
if extra_bins_h: # if --high_end_process bypass
|
| 363 |
+
max_bin = bp["n_fft"] // 2
|
| 364 |
+
spec_s[:, max_bin - extra_bins_h : max_bin, :] = extra_bins[
|
| 365 |
+
:, :extra_bins_h, :
|
| 366 |
+
]
|
| 367 |
+
if bp["hpf_start"] > 0:
|
| 368 |
+
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
|
| 369 |
+
if bands_n == 1:
|
| 370 |
+
wave = spectrogram_to_wave(
|
| 371 |
+
spec_s,
|
| 372 |
+
bp["hl"],
|
| 373 |
+
mp.param["mid_side"],
|
| 374 |
+
mp.param["mid_side_b2"],
|
| 375 |
+
mp.param["reverse"],
|
| 376 |
+
)
|
| 377 |
+
else:
|
| 378 |
+
wave = np.add(
|
| 379 |
+
wave,
|
| 380 |
+
spectrogram_to_wave(
|
| 381 |
+
spec_s,
|
| 382 |
+
bp["hl"],
|
| 383 |
+
mp.param["mid_side"],
|
| 384 |
+
mp.param["mid_side_b2"],
|
| 385 |
+
mp.param["reverse"],
|
| 386 |
+
),
|
| 387 |
+
)
|
| 388 |
+
else:
|
| 389 |
+
sr = mp.param["band"][d + 1]["sr"]
|
| 390 |
+
if d == 1: # lower
|
| 391 |
+
spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
|
| 392 |
+
wave = librosa.resample(
|
| 393 |
+
spectrogram_to_wave(
|
| 394 |
+
spec_s,
|
| 395 |
+
bp["hl"],
|
| 396 |
+
mp.param["mid_side"],
|
| 397 |
+
mp.param["mid_side_b2"],
|
| 398 |
+
mp.param["reverse"],
|
| 399 |
+
),
|
| 400 |
+
bp["sr"],
|
| 401 |
+
sr,
|
| 402 |
+
res_type="sinc_fastest",
|
| 403 |
+
)
|
| 404 |
+
else: # mid
|
| 405 |
+
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
|
| 406 |
+
spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
|
| 407 |
+
wave2 = np.add(
|
| 408 |
+
wave,
|
| 409 |
+
spectrogram_to_wave(
|
| 410 |
+
spec_s,
|
| 411 |
+
bp["hl"],
|
| 412 |
+
mp.param["mid_side"],
|
| 413 |
+
mp.param["mid_side_b2"],
|
| 414 |
+
mp.param["reverse"],
|
| 415 |
+
),
|
| 416 |
+
)
|
| 417 |
+
# wave = librosa.core.resample(wave2, bp['sr'], sr, res_type="sinc_fastest")
|
| 418 |
+
wave = librosa.core.resample(wave2, bp["sr"], sr, res_type="scipy")
|
| 419 |
+
|
| 420 |
+
return wave.T
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def fft_lp_filter(spec, bin_start, bin_stop):
|
| 424 |
+
g = 1.0
|
| 425 |
+
for b in range(bin_start, bin_stop):
|
| 426 |
+
g -= 1 / (bin_stop - bin_start)
|
| 427 |
+
spec[:, b, :] = g * spec[:, b, :]
|
| 428 |
+
|
| 429 |
+
spec[:, bin_stop:, :] *= 0
|
| 430 |
+
|
| 431 |
+
return spec
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
def fft_hp_filter(spec, bin_start, bin_stop):
|
| 435 |
+
g = 1.0
|
| 436 |
+
for b in range(bin_start, bin_stop, -1):
|
| 437 |
+
g -= 1 / (bin_start - bin_stop)
|
| 438 |
+
spec[:, b, :] = g * spec[:, b, :]
|
| 439 |
+
|
| 440 |
+
spec[:, 0 : bin_stop + 1, :] *= 0
|
| 441 |
+
|
| 442 |
+
return spec
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def mirroring(a, spec_m, input_high_end, mp):
|
| 446 |
+
if "mirroring" == a:
|
| 447 |
+
mirror = np.flip(
|
| 448 |
+
np.abs(
|
| 449 |
+
spec_m[
|
| 450 |
+
:,
|
| 451 |
+
mp.param["pre_filter_start"]
|
| 452 |
+
- 10
|
| 453 |
+
- input_high_end.shape[1] : mp.param["pre_filter_start"]
|
| 454 |
+
- 10,
|
| 455 |
+
:,
|
| 456 |
+
]
|
| 457 |
+
),
|
| 458 |
+
1,
|
| 459 |
+
)
|
| 460 |
+
mirror = mirror * np.exp(1.0j * np.angle(input_high_end))
|
| 461 |
+
|
| 462 |
+
return np.where(
|
| 463 |
+
np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
if "mirroring2" == a:
|
| 467 |
+
mirror = np.flip(
|
| 468 |
+
np.abs(
|
| 469 |
+
spec_m[
|
| 470 |
+
:,
|
| 471 |
+
mp.param["pre_filter_start"]
|
| 472 |
+
- 10
|
| 473 |
+
- input_high_end.shape[1] : mp.param["pre_filter_start"]
|
| 474 |
+
- 10,
|
| 475 |
+
:,
|
| 476 |
+
]
|
| 477 |
+
),
|
| 478 |
+
1,
|
| 479 |
+
)
|
| 480 |
+
mi = np.multiply(mirror, input_high_end * 1.7)
|
| 481 |
+
|
| 482 |
+
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
def ensembling(a, specs):
|
| 486 |
+
for i in range(1, len(specs)):
|
| 487 |
+
if i == 1:
|
| 488 |
+
spec = specs[0]
|
| 489 |
+
|
| 490 |
+
ln = min([spec.shape[2], specs[i].shape[2]])
|
| 491 |
+
spec = spec[:, :, :ln]
|
| 492 |
+
specs[i] = specs[i][:, :, :ln]
|
| 493 |
+
|
| 494 |
+
if "min_mag" == a:
|
| 495 |
+
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
|
| 496 |
+
if "max_mag" == a:
|
| 497 |
+
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
|
| 498 |
+
|
| 499 |
+
return spec
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
def stft(wave, nfft, hl):
|
| 503 |
+
wave_left = np.asfortranarray(wave[0])
|
| 504 |
+
wave_right = np.asfortranarray(wave[1])
|
| 505 |
+
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
|
| 506 |
+
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
|
| 507 |
+
spec = np.asfortranarray([spec_left, spec_right])
|
| 508 |
+
|
| 509 |
+
return spec
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def istft(spec, hl):
|
| 513 |
+
spec_left = np.asfortranarray(spec[0])
|
| 514 |
+
spec_right = np.asfortranarray(spec[1])
|
| 515 |
+
|
| 516 |
+
wave_left = librosa.istft(spec_left, hop_length=hl)
|
| 517 |
+
wave_right = librosa.istft(spec_right, hop_length=hl)
|
| 518 |
+
wave = np.asfortranarray([wave_left, wave_right])
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
if __name__ == "__main__":
|
| 522 |
+
import cv2
|
| 523 |
+
import sys
|
| 524 |
+
import time
|
| 525 |
+
import argparse
|
| 526 |
+
from model_param_init import ModelParameters
|
| 527 |
+
|
| 528 |
+
p = argparse.ArgumentParser()
|
| 529 |
+
p.add_argument(
|
| 530 |
+
"--algorithm",
|
| 531 |
+
"-a",
|
| 532 |
+
type=str,
|
| 533 |
+
choices=["invert", "invert_p", "min_mag", "max_mag", "deep", "align"],
|
| 534 |
+
default="min_mag",
|
| 535 |
+
)
|
| 536 |
+
p.add_argument(
|
| 537 |
+
"--model_params",
|
| 538 |
+
"-m",
|
| 539 |
+
type=str,
|
| 540 |
+
default=os.path.join("modelparams", "1band_sr44100_hl512.json"),
|
| 541 |
+
)
|
| 542 |
+
p.add_argument("--output_name", "-o", type=str, default="output")
|
| 543 |
+
p.add_argument("--vocals_only", "-v", action="store_true")
|
| 544 |
+
p.add_argument("input", nargs="+")
|
| 545 |
+
args = p.parse_args()
|
| 546 |
+
|
| 547 |
+
start_time = time.time()
|
| 548 |
+
|
| 549 |
+
if args.algorithm.startswith("invert") and len(args.input) != 2:
|
| 550 |
+
raise ValueError("There should be two input files.")
|
| 551 |
+
|
| 552 |
+
if not args.algorithm.startswith("invert") and len(args.input) < 2:
|
| 553 |
+
raise ValueError("There must be at least two input files.")
|
| 554 |
+
|
| 555 |
+
wave, specs = {}, {}
|
| 556 |
+
mp = ModelParameters(args.model_params)
|
| 557 |
+
|
| 558 |
+
for i in range(len(args.input)):
|
| 559 |
+
spec = {}
|
| 560 |
+
|
| 561 |
+
for d in range(len(mp.param["band"]), 0, -1):
|
| 562 |
+
bp = mp.param["band"][d]
|
| 563 |
+
|
| 564 |
+
if d == len(mp.param["band"]): # high-end band
|
| 565 |
+
wave[d], _ = librosa.load(
|
| 566 |
+
args.input[i],
|
| 567 |
+
bp["sr"],
|
| 568 |
+
False,
|
| 569 |
+
dtype=np.float32,
|
| 570 |
+
res_type=bp["res_type"],
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
if len(wave[d].shape) == 1: # mono to stereo
|
| 574 |
+
wave[d] = np.array([wave[d], wave[d]])
|
| 575 |
+
else: # lower bands
|
| 576 |
+
wave[d] = librosa.resample(
|
| 577 |
+
wave[d + 1],
|
| 578 |
+
mp.param["band"][d + 1]["sr"],
|
| 579 |
+
bp["sr"],
|
| 580 |
+
res_type=bp["res_type"],
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
spec[d] = wave_to_spectrogram(
|
| 584 |
+
wave[d],
|
| 585 |
+
bp["hl"],
|
| 586 |
+
bp["n_fft"],
|
| 587 |
+
mp.param["mid_side"],
|
| 588 |
+
mp.param["mid_side_b2"],
|
| 589 |
+
mp.param["reverse"],
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
specs[i] = combine_spectrograms(spec, mp)
|
| 593 |
+
|
| 594 |
+
del wave
|
| 595 |
+
|
| 596 |
+
if args.algorithm == "deep":
|
| 597 |
+
d_spec = np.where(np.abs(specs[0]) <= np.abs(spec[1]), specs[0], spec[1])
|
| 598 |
+
v_spec = d_spec - specs[1]
|
| 599 |
+
sf.write(
|
| 600 |
+
os.path.join("{}.wav".format(args.output_name)),
|
| 601 |
+
cmb_spectrogram_to_wave(v_spec, mp),
|
| 602 |
+
mp.param["sr"],
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
if args.algorithm.startswith("invert"):
|
| 606 |
+
ln = min([specs[0].shape[2], specs[1].shape[2]])
|
| 607 |
+
specs[0] = specs[0][:, :, :ln]
|
| 608 |
+
specs[1] = specs[1][:, :, :ln]
|
| 609 |
+
|
| 610 |
+
if "invert_p" == args.algorithm:
|
| 611 |
+
X_mag = np.abs(specs[0])
|
| 612 |
+
y_mag = np.abs(specs[1])
|
| 613 |
+
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
| 614 |
+
v_spec = specs[1] - max_mag * np.exp(1.0j * np.angle(specs[0]))
|
| 615 |
+
else:
|
| 616 |
+
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
|
| 617 |
+
v_spec = specs[0] - specs[1]
|
| 618 |
+
|
| 619 |
+
if not args.vocals_only:
|
| 620 |
+
X_mag = np.abs(specs[0])
|
| 621 |
+
y_mag = np.abs(specs[1])
|
| 622 |
+
v_mag = np.abs(v_spec)
|
| 623 |
+
|
| 624 |
+
X_image = spectrogram_to_image(X_mag)
|
| 625 |
+
y_image = spectrogram_to_image(y_mag)
|
| 626 |
+
v_image = spectrogram_to_image(v_mag)
|
| 627 |
+
|
| 628 |
+
cv2.imwrite("{}_X.png".format(args.output_name), X_image)
|
| 629 |
+
cv2.imwrite("{}_y.png".format(args.output_name), y_image)
|
| 630 |
+
cv2.imwrite("{}_v.png".format(args.output_name), v_image)
|
| 631 |
+
|
| 632 |
+
sf.write(
|
| 633 |
+
"{}_X.wav".format(args.output_name),
|
| 634 |
+
cmb_spectrogram_to_wave(specs[0], mp),
|
| 635 |
+
mp.param["sr"],
|
| 636 |
+
)
|
| 637 |
+
sf.write(
|
| 638 |
+
"{}_y.wav".format(args.output_name),
|
| 639 |
+
cmb_spectrogram_to_wave(specs[1], mp),
|
| 640 |
+
mp.param["sr"],
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
+
sf.write(
|
| 644 |
+
"{}_v.wav".format(args.output_name),
|
| 645 |
+
cmb_spectrogram_to_wave(v_spec, mp),
|
| 646 |
+
mp.param["sr"],
|
| 647 |
+
)
|
| 648 |
+
else:
|
| 649 |
+
if not args.algorithm == "deep":
|
| 650 |
+
sf.write(
|
| 651 |
+
os.path.join("ensembled", "{}.wav".format(args.output_name)),
|
| 652 |
+
cmb_spectrogram_to_wave(ensembling(args.algorithm, specs), mp),
|
| 653 |
+
mp.param["sr"],
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
if args.algorithm == "align":
|
| 657 |
+
trackalignment = [
|
| 658 |
+
{
|
| 659 |
+
"file1": '"{}"'.format(args.input[0]),
|
| 660 |
+
"file2": '"{}"'.format(args.input[1]),
|
| 661 |
+
}
|
| 662 |
+
]
|
| 663 |
+
|
| 664 |
+
for i, e in tqdm(enumerate(trackalignment), desc="Performing Alignment..."):
|
| 665 |
+
os.system(f"python lib/align_tracks.py {e['file1']} {e['file2']}")
|
| 666 |
+
|
| 667 |
+
# print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
|
uvr5_pack/name_params.json
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"equivalent" : [
|
| 3 |
+
{
|
| 4 |
+
"model_hash_name" : [
|
| 5 |
+
{
|
| 6 |
+
"hash_name": "47939caf0cfe52a0e81442b85b971dfd",
|
| 7 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
| 8 |
+
"param_name": "4band_44100"
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"hash_name": "4e4ecb9764c50a8c414fee6e10395bbe",
|
| 12 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2.json",
|
| 13 |
+
"param_name": "4band_v2"
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"hash_name": "ca106edd563e034bde0bdec4bb7a4b36",
|
| 17 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2.json",
|
| 18 |
+
"param_name": "4band_v2"
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"hash_name": "e60a1e84803ce4efc0a6551206cc4b71",
|
| 22 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
| 23 |
+
"param_name": "4band_44100"
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"hash_name": "a82f14e75892e55e994376edbf0c8435",
|
| 27 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
| 28 |
+
"param_name": "4band_44100"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"hash_name": "6dd9eaa6f0420af9f1d403aaafa4cc06",
|
| 32 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2_sn.json",
|
| 33 |
+
"param_name": "4band_v2_sn"
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"hash_name": "08611fb99bd59eaa79ad27c58d137727",
|
| 37 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2_sn.json",
|
| 38 |
+
"param_name": "4band_v2_sn"
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"hash_name": "5c7bbca45a187e81abbbd351606164e5",
|
| 42 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json",
|
| 43 |
+
"param_name": "3band_44100_msb2"
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"hash_name": "d6b2cb685a058a091e5e7098192d3233",
|
| 47 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json",
|
| 48 |
+
"param_name": "3band_44100_msb2"
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"hash_name": "c1b9f38170a7c90e96f027992eb7c62b",
|
| 52 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
| 53 |
+
"param_name": "4band_44100"
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"hash_name": "c3448ec923fa0edf3d03a19e633faa53",
|
| 57 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
| 58 |
+
"param_name": "4band_44100"
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"hash_name": "68aa2c8093d0080704b200d140f59e54",
|
| 62 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100.json",
|
| 63 |
+
"param_name": "3band_44100"
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"hash_name": "fdc83be5b798e4bd29fe00fe6600e147",
|
| 67 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_mid.json",
|
| 68 |
+
"param_name": "3band_44100_mid.json"
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"hash_name": "2ce34bc92fd57f55db16b7a4def3d745",
|
| 72 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_mid.json",
|
| 73 |
+
"param_name": "3band_44100_mid.json"
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"hash_name": "52fdca89576f06cf4340b74a4730ee5f",
|
| 77 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
| 78 |
+
"param_name": "4band_44100.json"
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"hash_name": "41191165b05d38fc77f072fa9e8e8a30",
|
| 82 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
| 83 |
+
"param_name": "4band_44100.json"
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"hash_name": "89e83b511ad474592689e562d5b1f80e",
|
| 87 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/2band_32000.json",
|
| 88 |
+
"param_name": "2band_32000.json"
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"hash_name": "0b954da81d453b716b114d6d7c95177f",
|
| 92 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/2band_32000.json",
|
| 93 |
+
"param_name": "2band_32000.json"
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
],
|
| 97 |
+
"v4 Models": [
|
| 98 |
+
{
|
| 99 |
+
"hash_name": "6a00461c51c2920fd68937d4609ed6c8",
|
| 100 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json",
|
| 101 |
+
"param_name": "1band_sr16000_hl512"
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"hash_name": "0ab504864d20f1bd378fe9c81ef37140",
|
| 105 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json",
|
| 106 |
+
"param_name": "1band_sr32000_hl512"
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"hash_name": "7dd21065bf91c10f7fccb57d7d83b07f",
|
| 110 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json",
|
| 111 |
+
"param_name": "1band_sr32000_hl512"
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"hash_name": "80ab74d65e515caa3622728d2de07d23",
|
| 115 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json",
|
| 116 |
+
"param_name": "1band_sr32000_hl512"
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"hash_name": "edc115e7fc523245062200c00caa847f",
|
| 120 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json",
|
| 121 |
+
"param_name": "1band_sr33075_hl384"
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"hash_name": "28063e9f6ab5b341c5f6d3c67f2045b7",
|
| 125 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json",
|
| 126 |
+
"param_name": "1band_sr33075_hl384"
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"hash_name": "b58090534c52cbc3e9b5104bad666ef2",
|
| 130 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json",
|
| 131 |
+
"param_name": "1band_sr44100_hl512"
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"hash_name": "0cdab9947f1b0928705f518f3c78ea8f",
|
| 135 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json",
|
| 136 |
+
"param_name": "1band_sr44100_hl512"
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"hash_name": "ae702fed0238afb5346db8356fe25f13",
|
| 140 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json",
|
| 141 |
+
"param_name": "1band_sr44100_hl1024"
|
| 142 |
+
}
|
| 143 |
+
]
|
| 144 |
+
}
|
| 145 |
+
],
|
| 146 |
+
"User Models" : [
|
| 147 |
+
{
|
| 148 |
+
"1 Band": [
|
| 149 |
+
{
|
| 150 |
+
"hash_name": "1band_sr16000_hl512",
|
| 151 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json",
|
| 152 |
+
"param_name": "1band_sr16000_hl512"
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"hash_name": "1band_sr32000_hl512",
|
| 156 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json",
|
| 157 |
+
"param_name": "1band_sr16000_hl512"
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"hash_name": "1band_sr33075_hl384",
|
| 161 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json",
|
| 162 |
+
"param_name": "1band_sr33075_hl384"
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"hash_name": "1band_sr44100_hl256",
|
| 166 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json",
|
| 167 |
+
"param_name": "1band_sr44100_hl256"
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"hash_name": "1band_sr44100_hl512",
|
| 171 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json",
|
| 172 |
+
"param_name": "1band_sr44100_hl512"
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"hash_name": "1band_sr44100_hl1024",
|
| 176 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json",
|
| 177 |
+
"param_name": "1band_sr44100_hl1024"
|
| 178 |
+
}
|
| 179 |
+
],
|
| 180 |
+
"2 Band": [
|
| 181 |
+
{
|
| 182 |
+
"hash_name": "2band_44100_lofi",
|
| 183 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json",
|
| 184 |
+
"param_name": "2band_44100_lofi"
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"hash_name": "2band_32000",
|
| 188 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/2band_32000.json",
|
| 189 |
+
"param_name": "2band_32000"
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"hash_name": "2band_48000",
|
| 193 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/2band_48000.json",
|
| 194 |
+
"param_name": "2band_48000"
|
| 195 |
+
}
|
| 196 |
+
],
|
| 197 |
+
"3 Band": [
|
| 198 |
+
{
|
| 199 |
+
"hash_name": "3band_44100",
|
| 200 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100.json",
|
| 201 |
+
"param_name": "3band_44100"
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"hash_name": "3band_44100_mid",
|
| 205 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_mid.json",
|
| 206 |
+
"param_name": "3band_44100_mid"
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"hash_name": "3band_44100_msb2",
|
| 210 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json",
|
| 211 |
+
"param_name": "3band_44100_msb2"
|
| 212 |
+
}
|
| 213 |
+
],
|
| 214 |
+
"4 Band": [
|
| 215 |
+
{
|
| 216 |
+
"hash_name": "4band_44100",
|
| 217 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
| 218 |
+
"param_name": "4band_44100"
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"hash_name": "4band_44100_mid",
|
| 222 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_mid.json",
|
| 223 |
+
"param_name": "4band_44100_mid"
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"hash_name": "4band_44100_msb",
|
| 227 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_msb.json",
|
| 228 |
+
"param_name": "4band_44100_msb"
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"hash_name": "4band_44100_msb2",
|
| 232 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json",
|
| 233 |
+
"param_name": "4band_44100_msb2"
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"hash_name": "4band_44100_reverse",
|
| 237 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json",
|
| 238 |
+
"param_name": "4band_44100_reverse"
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"hash_name": "4band_44100_sw",
|
| 242 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_sw.json",
|
| 243 |
+
"param_name": "4band_44100_sw"
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"hash_name": "4band_v2",
|
| 247 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2.json",
|
| 248 |
+
"param_name": "4band_v2"
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"hash_name": "4band_v2_sn",
|
| 252 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2_sn.json",
|
| 253 |
+
"param_name": "4band_v2_sn"
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"hash_name": "tmodelparam",
|
| 257 |
+
"model_params": "uvr5_pack/lib_v5/modelparams/tmodelparam.json",
|
| 258 |
+
"param_name": "User Model Param Set"
|
| 259 |
+
}
|
| 260 |
+
]
|
| 261 |
+
}
|
| 262 |
+
]
|
| 263 |
+
}
|
uvr5_pack/utils.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def load_data(file_name: str = "./uvr5_pack/name_params.json") -> dict:
|
| 8 |
+
with open(file_name, "r") as f:
|
| 9 |
+
data = json.load(f)
|
| 10 |
+
|
| 11 |
+
return data
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def make_padding(width, cropsize, offset):
|
| 15 |
+
left = offset
|
| 16 |
+
roi_size = cropsize - left * 2
|
| 17 |
+
if roi_size == 0:
|
| 18 |
+
roi_size = cropsize
|
| 19 |
+
right = roi_size - (width % roi_size) + left
|
| 20 |
+
|
| 21 |
+
return left, right, roi_size
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def inference(X_spec, device, model, aggressiveness, data):
|
| 25 |
+
"""
|
| 26 |
+
data : dic configs
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
def _execute(
|
| 30 |
+
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half=True
|
| 31 |
+
):
|
| 32 |
+
model.eval()
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
preds = []
|
| 35 |
+
|
| 36 |
+
iterations = [n_window]
|
| 37 |
+
|
| 38 |
+
total_iterations = sum(iterations)
|
| 39 |
+
for i in tqdm(range(n_window)):
|
| 40 |
+
start = i * roi_size
|
| 41 |
+
X_mag_window = X_mag_pad[
|
| 42 |
+
None, :, :, start : start + data["window_size"]
|
| 43 |
+
]
|
| 44 |
+
X_mag_window = torch.from_numpy(X_mag_window)
|
| 45 |
+
if is_half:
|
| 46 |
+
X_mag_window = X_mag_window.half()
|
| 47 |
+
X_mag_window = X_mag_window.to(device)
|
| 48 |
+
|
| 49 |
+
pred = model.predict(X_mag_window, aggressiveness)
|
| 50 |
+
|
| 51 |
+
pred = pred.detach().cpu().numpy()
|
| 52 |
+
preds.append(pred[0])
|
| 53 |
+
|
| 54 |
+
pred = np.concatenate(preds, axis=2)
|
| 55 |
+
return pred
|
| 56 |
+
|
| 57 |
+
def preprocess(X_spec):
|
| 58 |
+
X_mag = np.abs(X_spec)
|
| 59 |
+
X_phase = np.angle(X_spec)
|
| 60 |
+
|
| 61 |
+
return X_mag, X_phase
|
| 62 |
+
|
| 63 |
+
X_mag, X_phase = preprocess(X_spec)
|
| 64 |
+
|
| 65 |
+
coef = X_mag.max()
|
| 66 |
+
X_mag_pre = X_mag / coef
|
| 67 |
+
|
| 68 |
+
n_frame = X_mag_pre.shape[2]
|
| 69 |
+
pad_l, pad_r, roi_size = make_padding(n_frame, data["window_size"], model.offset)
|
| 70 |
+
n_window = int(np.ceil(n_frame / roi_size))
|
| 71 |
+
|
| 72 |
+
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
| 73 |
+
|
| 74 |
+
if list(model.state_dict().values())[0].dtype == torch.float16:
|
| 75 |
+
is_half = True
|
| 76 |
+
else:
|
| 77 |
+
is_half = False
|
| 78 |
+
pred = _execute(
|
| 79 |
+
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
|
| 80 |
+
)
|
| 81 |
+
pred = pred[:, :, :n_frame]
|
| 82 |
+
|
| 83 |
+
if data["tta"]:
|
| 84 |
+
pad_l += roi_size // 2
|
| 85 |
+
pad_r += roi_size // 2
|
| 86 |
+
n_window += 1
|
| 87 |
+
|
| 88 |
+
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
| 89 |
+
|
| 90 |
+
pred_tta = _execute(
|
| 91 |
+
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
|
| 92 |
+
)
|
| 93 |
+
pred_tta = pred_tta[:, :, roi_size // 2 :]
|
| 94 |
+
pred_tta = pred_tta[:, :, :n_frame]
|
| 95 |
+
|
| 96 |
+
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.0j * X_phase)
|
| 97 |
+
else:
|
| 98 |
+
return pred * coef, X_mag, np.exp(1.0j * X_phase)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _get_name_params(model_path, model_hash):
|
| 102 |
+
data = load_data()
|
| 103 |
+
flag = False
|
| 104 |
+
ModelName = model_path
|
| 105 |
+
for type in list(data):
|
| 106 |
+
for model in list(data[type][0]):
|
| 107 |
+
for i in range(len(data[type][0][model])):
|
| 108 |
+
if str(data[type][0][model][i]["hash_name"]) == model_hash:
|
| 109 |
+
flag = True
|
| 110 |
+
elif str(data[type][0][model][i]["hash_name"]) in ModelName:
|
| 111 |
+
flag = True
|
| 112 |
+
|
| 113 |
+
if flag:
|
| 114 |
+
model_params_auto = data[type][0][model][i]["model_params"]
|
| 115 |
+
param_name_auto = data[type][0][model][i]["param_name"]
|
| 116 |
+
if type == "equivalent":
|
| 117 |
+
return param_name_auto, model_params_auto
|
| 118 |
+
else:
|
| 119 |
+
flag = False
|
| 120 |
+
return param_name_auto, model_params_auto
|