Update MDXNet.py
Browse files
MDXNet.py
CHANGED
|
@@ -1,274 +1,274 @@
|
|
| 1 |
-
import soundfile as sf
|
| 2 |
-
import torch, pdb, time, argparse, os, warnings, sys, librosa
|
| 3 |
-
import numpy as np
|
| 4 |
-
import onnxruntime as ort
|
| 5 |
-
from scipy.io.wavfile import write
|
| 6 |
-
from tqdm import tqdm
|
| 7 |
-
import torch
|
| 8 |
-
import torch.nn as nn
|
| 9 |
-
|
| 10 |
-
dim_c = 4
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
class Conv_TDF_net_trim:
|
| 14 |
-
def __init__(
|
| 15 |
-
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024
|
| 16 |
-
):
|
| 17 |
-
super(Conv_TDF_net_trim, self).__init__()
|
| 18 |
-
|
| 19 |
-
self.dim_f = dim_f
|
| 20 |
-
self.dim_t = 2**dim_t
|
| 21 |
-
self.n_fft = n_fft
|
| 22 |
-
self.hop = hop
|
| 23 |
-
self.n_bins = self.n_fft // 2 + 1
|
| 24 |
-
self.chunk_size = hop * (self.dim_t - 1)
|
| 25 |
-
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(
|
| 26 |
-
device
|
| 27 |
-
)
|
| 28 |
-
self.target_name = target_name
|
| 29 |
-
self.blender = "blender" in model_name
|
| 30 |
-
|
| 31 |
-
out_c = dim_c * 4 if target_name == "*" else dim_c
|
| 32 |
-
self.freq_pad = torch.zeros(
|
| 33 |
-
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
|
| 34 |
-
).to(device)
|
| 35 |
-
|
| 36 |
-
self.n = L // 2
|
| 37 |
-
|
| 38 |
-
def stft(self, x):
|
| 39 |
-
x = x.reshape([-1, self.chunk_size])
|
| 40 |
-
x = torch.stft(
|
| 41 |
-
x,
|
| 42 |
-
n_fft=self.n_fft,
|
| 43 |
-
hop_length=self.hop,
|
| 44 |
-
window=self.window,
|
| 45 |
-
center=True,
|
| 46 |
-
return_complex=True,
|
| 47 |
-
)
|
| 48 |
-
x = torch.view_as_real(x)
|
| 49 |
-
x = x.permute([0, 3, 1, 2])
|
| 50 |
-
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
| 51 |
-
[-1, dim_c, self.n_bins, self.dim_t]
|
| 52 |
-
)
|
| 53 |
-
return x[:, :, : self.dim_f]
|
| 54 |
-
|
| 55 |
-
def istft(self, x, freq_pad=None):
|
| 56 |
-
freq_pad = (
|
| 57 |
-
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
| 58 |
-
if freq_pad is None
|
| 59 |
-
else freq_pad
|
| 60 |
-
)
|
| 61 |
-
x = torch.cat([x, freq_pad], -2)
|
| 62 |
-
c = 4 * 2 if self.target_name == "*" else 2
|
| 63 |
-
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
|
| 64 |
-
[-1, 2, self.n_bins, self.dim_t]
|
| 65 |
-
)
|
| 66 |
-
x = x.permute([0, 2, 3, 1])
|
| 67 |
-
x = x.contiguous()
|
| 68 |
-
x = torch.view_as_complex(x)
|
| 69 |
-
x = torch.istft(
|
| 70 |
-
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
|
| 71 |
-
)
|
| 72 |
-
return x.reshape([-1, c, self.chunk_size])
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def get_models(device, dim_f, dim_t, n_fft):
|
| 76 |
-
return Conv_TDF_net_trim(
|
| 77 |
-
device=device,
|
| 78 |
-
model_name="Conv-TDF",
|
| 79 |
-
target_name="vocals",
|
| 80 |
-
L=11,
|
| 81 |
-
dim_f=dim_f,
|
| 82 |
-
dim_t=dim_t,
|
| 83 |
-
n_fft=n_fft,
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
warnings.filterwarnings("ignore")
|
| 88 |
-
cpu = torch.device("cpu")
|
| 89 |
-
if torch.cuda.is_available():
|
| 90 |
-
device = torch.device("cuda:0")
|
| 91 |
-
elif torch.backends.mps.is_available():
|
| 92 |
-
device = torch.device("mps")
|
| 93 |
-
else:
|
| 94 |
-
device = torch.device("cpu")
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
class Predictor:
|
| 98 |
-
def __init__(self, args):
|
| 99 |
-
self.args = args
|
| 100 |
-
self.model_ = get_models(
|
| 101 |
-
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
|
| 102 |
-
)
|
| 103 |
-
self.model = ort.InferenceSession(
|
| 104 |
-
os.path.join(args.onnx, self.model_.target_name + ".onnx"),
|
| 105 |
-
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
|
| 106 |
-
)
|
| 107 |
-
print("onnx load done")
|
| 108 |
-
|
| 109 |
-
def demix(self, mix):
|
| 110 |
-
samples = mix.shape[-1]
|
| 111 |
-
margin = self.args.margin
|
| 112 |
-
chunk_size = self.args.chunks * 44100
|
| 113 |
-
assert not margin == 0, "margin cannot be zero!"
|
| 114 |
-
if margin > chunk_size:
|
| 115 |
-
margin = chunk_size
|
| 116 |
-
|
| 117 |
-
segmented_mix = {}
|
| 118 |
-
|
| 119 |
-
if self.args.chunks == 0 or samples < chunk_size:
|
| 120 |
-
chunk_size = samples
|
| 121 |
-
|
| 122 |
-
counter = -1
|
| 123 |
-
for skip in range(0, samples, chunk_size):
|
| 124 |
-
counter += 1
|
| 125 |
-
|
| 126 |
-
s_margin = 0 if counter == 0 else margin
|
| 127 |
-
end = min(skip + chunk_size + margin, samples)
|
| 128 |
-
|
| 129 |
-
start = skip - s_margin
|
| 130 |
-
|
| 131 |
-
segmented_mix[skip] = mix[:, start:end].copy()
|
| 132 |
-
if end == samples:
|
| 133 |
-
break
|
| 134 |
-
|
| 135 |
-
sources = self.demix_base(segmented_mix, margin_size=margin)
|
| 136 |
-
"""
|
| 137 |
-
mix:(2,big_sample)
|
| 138 |
-
segmented_mix:offset->(2,small_sample)
|
| 139 |
-
sources:(1,2,big_sample)
|
| 140 |
-
"""
|
| 141 |
-
return sources
|
| 142 |
-
|
| 143 |
-
def demix_base(self, mixes, margin_size):
|
| 144 |
-
chunked_sources = []
|
| 145 |
-
progress_bar = tqdm(total=len(mixes))
|
| 146 |
-
progress_bar.set_description("Processing")
|
| 147 |
-
for mix in mixes:
|
| 148 |
-
cmix = mixes[mix]
|
| 149 |
-
sources = []
|
| 150 |
-
n_sample = cmix.shape[1]
|
| 151 |
-
model = self.model_
|
| 152 |
-
trim = model.n_fft // 2
|
| 153 |
-
gen_size = model.chunk_size - 2 * trim
|
| 154 |
-
pad = gen_size - n_sample % gen_size
|
| 155 |
-
mix_p = np.concatenate(
|
| 156 |
-
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
|
| 157 |
-
)
|
| 158 |
-
mix_waves = []
|
| 159 |
-
i = 0
|
| 160 |
-
while i < n_sample + pad:
|
| 161 |
-
waves = np.array(mix_p[:, i : i + model.chunk_size])
|
| 162 |
-
mix_waves.append(waves)
|
| 163 |
-
i += gen_size
|
| 164 |
-
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
|
| 165 |
-
with torch.no_grad():
|
| 166 |
-
_ort = self.model
|
| 167 |
-
spek = model.stft(mix_waves)
|
| 168 |
-
if self.args.denoise:
|
| 169 |
-
spec_pred = (
|
| 170 |
-
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
|
| 171 |
-
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
|
| 172 |
-
)
|
| 173 |
-
tar_waves = model.istft(torch.tensor(spec_pred))
|
| 174 |
-
else:
|
| 175 |
-
tar_waves = model.istft(
|
| 176 |
-
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0])
|
| 177 |
-
)
|
| 178 |
-
tar_signal = (
|
| 179 |
-
tar_waves[:, :, trim:-trim]
|
| 180 |
-
.transpose(0, 1)
|
| 181 |
-
.reshape(2, -1)
|
| 182 |
-
.numpy()[:, :-pad]
|
| 183 |
-
)
|
| 184 |
-
|
| 185 |
-
start = 0 if mix == 0 else margin_size
|
| 186 |
-
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
|
| 187 |
-
if margin_size == 0:
|
| 188 |
-
end = None
|
| 189 |
-
sources.append(tar_signal[:, start:end])
|
| 190 |
-
|
| 191 |
-
progress_bar.update(1)
|
| 192 |
-
|
| 193 |
-
chunked_sources.append(sources)
|
| 194 |
-
_sources = np.concatenate(chunked_sources, axis=-1)
|
| 195 |
-
# del self.model
|
| 196 |
-
progress_bar.close()
|
| 197 |
-
return _sources
|
| 198 |
-
|
| 199 |
-
def prediction(self, m, vocal_root, others_root, format):
|
| 200 |
-
os.makedirs(vocal_root, exist_ok=True)
|
| 201 |
-
os.makedirs(others_root, exist_ok=True)
|
| 202 |
-
basename = os.path.basename(m)
|
| 203 |
-
mix, rate = librosa.load(m, mono=False, sr=44100)
|
| 204 |
-
if mix.ndim == 1:
|
| 205 |
-
mix = np.asfortranarray([mix, mix])
|
| 206 |
-
mix = mix.T
|
| 207 |
-
sources = self.demix(mix.T)
|
| 208 |
-
opt = sources[0].T
|
| 209 |
-
if format in ["wav", "flac"]:
|
| 210 |
-
sf.write(
|
| 211 |
-
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate
|
| 212 |
-
)
|
| 213 |
-
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate)
|
| 214 |
-
else:
|
| 215 |
-
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename)
|
| 216 |
-
path_other = "%s/%s_others.wav" % (others_root, basename)
|
| 217 |
-
sf.write(path_vocal, mix - opt, rate)
|
| 218 |
-
sf.write(path_other, opt, rate)
|
| 219 |
-
if os.path.exists(path_vocal):
|
| 220 |
-
os.system(
|
| 221 |
-
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 222 |
-
% (path_vocal, path_vocal[:-4] + ".%s" % format)
|
| 223 |
-
)
|
| 224 |
-
if os.path.exists(path_other):
|
| 225 |
-
os.system(
|
| 226 |
-
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 227 |
-
% (path_other, path_other[:-4] + ".%s" % format)
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
class MDXNetDereverb:
|
| 232 |
-
def __init__(self, chunks):
|
| 233 |
-
self.onnx = "uvr5_weights/onnx_dereverb_By_FoxJoy"
|
| 234 |
-
self.shifts = 10 #'Predict with randomised equivariant stabilisation'
|
| 235 |
-
self.mixing = "min_mag" # ['default','min_mag','max_mag']
|
| 236 |
-
self.chunks = chunks
|
| 237 |
-
self.margin = 44100
|
| 238 |
-
self.dim_t = 9
|
| 239 |
-
self.dim_f = 3072
|
| 240 |
-
self.n_fft = 6144
|
| 241 |
-
self.denoise = True
|
| 242 |
-
self.pred = Predictor(self)
|
| 243 |
-
|
| 244 |
-
def _path_audio_(self, input, vocal_root, others_root, format):
|
| 245 |
-
self.pred.prediction(input, vocal_root, others_root, format)
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
if __name__ == "__main__":
|
| 249 |
-
dereverb = MDXNetDereverb(15)
|
| 250 |
-
from time import time as ttime
|
| 251 |
-
|
| 252 |
-
t0 = ttime()
|
| 253 |
-
dereverb._path_audio_(
|
| 254 |
-
"
|
| 255 |
-
"vocal",
|
| 256 |
-
"others",
|
| 257 |
-
)
|
| 258 |
-
t1 = ttime()
|
| 259 |
-
print(t1 - t0)
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
"""
|
| 263 |
-
|
| 264 |
-
runtime\python.exe MDXNet.py
|
| 265 |
-
|
| 266 |
-
6G:
|
| 267 |
-
15/9:0.8G->6.8G
|
| 268 |
-
14:0.8G->6.5G
|
| 269 |
-
25:炸
|
| 270 |
-
|
| 271 |
-
half15:0.7G->6.6G,22.69s
|
| 272 |
-
fp32-15:0.7G->6.6G,20.85s
|
| 273 |
-
|
| 274 |
-
"""
|
|
|
|
| 1 |
+
import soundfile as sf
|
| 2 |
+
import torch, pdb, time, argparse, os, warnings, sys, librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
import onnxruntime as ort
|
| 5 |
+
from scipy.io.wavfile import write
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
|
| 10 |
+
dim_c = 4
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Conv_TDF_net_trim:
|
| 14 |
+
def __init__(
|
| 15 |
+
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024
|
| 16 |
+
):
|
| 17 |
+
super(Conv_TDF_net_trim, self).__init__()
|
| 18 |
+
|
| 19 |
+
self.dim_f = dim_f
|
| 20 |
+
self.dim_t = 2**dim_t
|
| 21 |
+
self.n_fft = n_fft
|
| 22 |
+
self.hop = hop
|
| 23 |
+
self.n_bins = self.n_fft // 2 + 1
|
| 24 |
+
self.chunk_size = hop * (self.dim_t - 1)
|
| 25 |
+
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(
|
| 26 |
+
device
|
| 27 |
+
)
|
| 28 |
+
self.target_name = target_name
|
| 29 |
+
self.blender = "blender" in model_name
|
| 30 |
+
|
| 31 |
+
out_c = dim_c * 4 if target_name == "*" else dim_c
|
| 32 |
+
self.freq_pad = torch.zeros(
|
| 33 |
+
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
|
| 34 |
+
).to(device)
|
| 35 |
+
|
| 36 |
+
self.n = L // 2
|
| 37 |
+
|
| 38 |
+
def stft(self, x):
|
| 39 |
+
x = x.reshape([-1, self.chunk_size])
|
| 40 |
+
x = torch.stft(
|
| 41 |
+
x,
|
| 42 |
+
n_fft=self.n_fft,
|
| 43 |
+
hop_length=self.hop,
|
| 44 |
+
window=self.window,
|
| 45 |
+
center=True,
|
| 46 |
+
return_complex=True,
|
| 47 |
+
)
|
| 48 |
+
x = torch.view_as_real(x)
|
| 49 |
+
x = x.permute([0, 3, 1, 2])
|
| 50 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
| 51 |
+
[-1, dim_c, self.n_bins, self.dim_t]
|
| 52 |
+
)
|
| 53 |
+
return x[:, :, : self.dim_f]
|
| 54 |
+
|
| 55 |
+
def istft(self, x, freq_pad=None):
|
| 56 |
+
freq_pad = (
|
| 57 |
+
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
| 58 |
+
if freq_pad is None
|
| 59 |
+
else freq_pad
|
| 60 |
+
)
|
| 61 |
+
x = torch.cat([x, freq_pad], -2)
|
| 62 |
+
c = 4 * 2 if self.target_name == "*" else 2
|
| 63 |
+
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
|
| 64 |
+
[-1, 2, self.n_bins, self.dim_t]
|
| 65 |
+
)
|
| 66 |
+
x = x.permute([0, 2, 3, 1])
|
| 67 |
+
x = x.contiguous()
|
| 68 |
+
x = torch.view_as_complex(x)
|
| 69 |
+
x = torch.istft(
|
| 70 |
+
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
|
| 71 |
+
)
|
| 72 |
+
return x.reshape([-1, c, self.chunk_size])
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def get_models(device, dim_f, dim_t, n_fft):
|
| 76 |
+
return Conv_TDF_net_trim(
|
| 77 |
+
device=device,
|
| 78 |
+
model_name="Conv-TDF",
|
| 79 |
+
target_name="vocals",
|
| 80 |
+
L=11,
|
| 81 |
+
dim_f=dim_f,
|
| 82 |
+
dim_t=dim_t,
|
| 83 |
+
n_fft=n_fft,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
warnings.filterwarnings("ignore")
|
| 88 |
+
cpu = torch.device("cpu")
|
| 89 |
+
if torch.cuda.is_available():
|
| 90 |
+
device = torch.device("cuda:0")
|
| 91 |
+
elif torch.backends.mps.is_available():
|
| 92 |
+
device = torch.device("mps")
|
| 93 |
+
else:
|
| 94 |
+
device = torch.device("cpu")
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class Predictor:
|
| 98 |
+
def __init__(self, args):
|
| 99 |
+
self.args = args
|
| 100 |
+
self.model_ = get_models(
|
| 101 |
+
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
|
| 102 |
+
)
|
| 103 |
+
self.model = ort.InferenceSession(
|
| 104 |
+
os.path.join(args.onnx, self.model_.target_name + ".onnx"),
|
| 105 |
+
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
|
| 106 |
+
)
|
| 107 |
+
print("onnx load done")
|
| 108 |
+
|
| 109 |
+
def demix(self, mix):
|
| 110 |
+
samples = mix.shape[-1]
|
| 111 |
+
margin = self.args.margin
|
| 112 |
+
chunk_size = self.args.chunks * 44100
|
| 113 |
+
assert not margin == 0, "margin cannot be zero!"
|
| 114 |
+
if margin > chunk_size:
|
| 115 |
+
margin = chunk_size
|
| 116 |
+
|
| 117 |
+
segmented_mix = {}
|
| 118 |
+
|
| 119 |
+
if self.args.chunks == 0 or samples < chunk_size:
|
| 120 |
+
chunk_size = samples
|
| 121 |
+
|
| 122 |
+
counter = -1
|
| 123 |
+
for skip in range(0, samples, chunk_size):
|
| 124 |
+
counter += 1
|
| 125 |
+
|
| 126 |
+
s_margin = 0 if counter == 0 else margin
|
| 127 |
+
end = min(skip + chunk_size + margin, samples)
|
| 128 |
+
|
| 129 |
+
start = skip - s_margin
|
| 130 |
+
|
| 131 |
+
segmented_mix[skip] = mix[:, start:end].copy()
|
| 132 |
+
if end == samples:
|
| 133 |
+
break
|
| 134 |
+
|
| 135 |
+
sources = self.demix_base(segmented_mix, margin_size=margin)
|
| 136 |
+
"""
|
| 137 |
+
mix:(2,big_sample)
|
| 138 |
+
segmented_mix:offset->(2,small_sample)
|
| 139 |
+
sources:(1,2,big_sample)
|
| 140 |
+
"""
|
| 141 |
+
return sources
|
| 142 |
+
|
| 143 |
+
def demix_base(self, mixes, margin_size):
|
| 144 |
+
chunked_sources = []
|
| 145 |
+
progress_bar = tqdm(total=len(mixes))
|
| 146 |
+
progress_bar.set_description("Processing")
|
| 147 |
+
for mix in mixes:
|
| 148 |
+
cmix = mixes[mix]
|
| 149 |
+
sources = []
|
| 150 |
+
n_sample = cmix.shape[1]
|
| 151 |
+
model = self.model_
|
| 152 |
+
trim = model.n_fft // 2
|
| 153 |
+
gen_size = model.chunk_size - 2 * trim
|
| 154 |
+
pad = gen_size - n_sample % gen_size
|
| 155 |
+
mix_p = np.concatenate(
|
| 156 |
+
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
|
| 157 |
+
)
|
| 158 |
+
mix_waves = []
|
| 159 |
+
i = 0
|
| 160 |
+
while i < n_sample + pad:
|
| 161 |
+
waves = np.array(mix_p[:, i : i + model.chunk_size])
|
| 162 |
+
mix_waves.append(waves)
|
| 163 |
+
i += gen_size
|
| 164 |
+
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
|
| 165 |
+
with torch.no_grad():
|
| 166 |
+
_ort = self.model
|
| 167 |
+
spek = model.stft(mix_waves)
|
| 168 |
+
if self.args.denoise:
|
| 169 |
+
spec_pred = (
|
| 170 |
+
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
|
| 171 |
+
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
|
| 172 |
+
)
|
| 173 |
+
tar_waves = model.istft(torch.tensor(spec_pred))
|
| 174 |
+
else:
|
| 175 |
+
tar_waves = model.istft(
|
| 176 |
+
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0])
|
| 177 |
+
)
|
| 178 |
+
tar_signal = (
|
| 179 |
+
tar_waves[:, :, trim:-trim]
|
| 180 |
+
.transpose(0, 1)
|
| 181 |
+
.reshape(2, -1)
|
| 182 |
+
.numpy()[:, :-pad]
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
start = 0 if mix == 0 else margin_size
|
| 186 |
+
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
|
| 187 |
+
if margin_size == 0:
|
| 188 |
+
end = None
|
| 189 |
+
sources.append(tar_signal[:, start:end])
|
| 190 |
+
|
| 191 |
+
progress_bar.update(1)
|
| 192 |
+
|
| 193 |
+
chunked_sources.append(sources)
|
| 194 |
+
_sources = np.concatenate(chunked_sources, axis=-1)
|
| 195 |
+
# del self.model
|
| 196 |
+
progress_bar.close()
|
| 197 |
+
return _sources
|
| 198 |
+
|
| 199 |
+
def prediction(self, m, vocal_root, others_root, format):
|
| 200 |
+
os.makedirs(vocal_root, exist_ok=True)
|
| 201 |
+
os.makedirs(others_root, exist_ok=True)
|
| 202 |
+
basename = os.path.basename(m)
|
| 203 |
+
mix, rate = librosa.load(m, mono=False, sr=44100)
|
| 204 |
+
if mix.ndim == 1:
|
| 205 |
+
mix = np.asfortranarray([mix, mix])
|
| 206 |
+
mix = mix.T
|
| 207 |
+
sources = self.demix(mix.T)
|
| 208 |
+
opt = sources[0].T
|
| 209 |
+
if format in ["wav", "flac"]:
|
| 210 |
+
sf.write(
|
| 211 |
+
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate
|
| 212 |
+
)
|
| 213 |
+
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate)
|
| 214 |
+
else:
|
| 215 |
+
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename)
|
| 216 |
+
path_other = "%s/%s_others.wav" % (others_root, basename)
|
| 217 |
+
sf.write(path_vocal, mix - opt, rate)
|
| 218 |
+
sf.write(path_other, opt, rate)
|
| 219 |
+
if os.path.exists(path_vocal):
|
| 220 |
+
os.system(
|
| 221 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 222 |
+
% (path_vocal, path_vocal[:-4] + ".%s" % format)
|
| 223 |
+
)
|
| 224 |
+
if os.path.exists(path_other):
|
| 225 |
+
os.system(
|
| 226 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 227 |
+
% (path_other, path_other[:-4] + ".%s" % format)
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class MDXNetDereverb:
|
| 232 |
+
def __init__(self, chunks):
|
| 233 |
+
self.onnx = "uvr5_weights/onnx_dereverb_By_FoxJoy"
|
| 234 |
+
self.shifts = 10 #'Predict with randomised equivariant stabilisation'
|
| 235 |
+
self.mixing = "min_mag" # ['default','min_mag','max_mag']
|
| 236 |
+
self.chunks = chunks
|
| 237 |
+
self.margin = 44100
|
| 238 |
+
self.dim_t = 9
|
| 239 |
+
self.dim_f = 3072
|
| 240 |
+
self.n_fft = 6144
|
| 241 |
+
self.denoise = True
|
| 242 |
+
self.pred = Predictor(self)
|
| 243 |
+
|
| 244 |
+
def _path_audio_(self, input, vocal_root, others_root, format):
|
| 245 |
+
self.pred.prediction(input, vocal_root, others_root, format)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
if __name__ == "__main__":
|
| 249 |
+
dereverb = MDXNetDereverb(15)
|
| 250 |
+
from time import time as ttime
|
| 251 |
+
|
| 252 |
+
t0 = ttime()
|
| 253 |
+
dereverb._path_audio_(
|
| 254 |
+
"Snowy accompaniment cancellation HP5.wav",
|
| 255 |
+
"vocal",
|
| 256 |
+
"others",
|
| 257 |
+
)
|
| 258 |
+
t1 = ttime()
|
| 259 |
+
print(t1 - t0)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
runtime\python.exe MDXNet.py
|
| 265 |
+
|
| 266 |
+
6G:
|
| 267 |
+
15/9:0.8G->6.8G
|
| 268 |
+
14:0.8G->6.5G
|
| 269 |
+
25:炸
|
| 270 |
+
|
| 271 |
+
half15:0.7G->6.6G,22.69s
|
| 272 |
+
fp32-15:0.7G->6.6G,20.85s
|
| 273 |
+
|
| 274 |
+
"""
|