|
import gradio as gr |
|
import pandas as pd |
|
import io |
|
import base64 |
|
import uuid |
|
import pixeltable as pxt |
|
from pixeltable.iterators import DocumentSplitter |
|
import numpy as np |
|
from pixeltable.functions.huggingface import sentence_transformer |
|
from pixeltable.functions import openai |
|
from gradio.themes import Monochrome |
|
|
|
import os |
|
import getpass |
|
|
|
|
|
if 'OPENAI_API_KEY' not in os.environ: |
|
os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API key:') |
|
|
|
|
|
@pxt.expr_udf |
|
def e5_embed(text: str) -> np.ndarray: |
|
return sentence_transformer(text, model_id='intfloat/e5-large-v2') |
|
|
|
|
|
@pxt.udf |
|
def create_prompt(top_k_list: list[dict], question: str) -> str: |
|
concat_top_k = '\n\n'.join( |
|
elt['text'] for elt in reversed(top_k_list) |
|
) |
|
return f''' |
|
PASSAGES: |
|
{concat_top_k} |
|
QUESTION: |
|
{question}''' |
|
|
|
def process_files(pdf_files, chunk_limit, chunk_separator): |
|
|
|
pxt.drop_dir('chatbot_demo', force=True) |
|
pxt.create_dir('chatbot_demo') |
|
|
|
|
|
t = pxt.create_table( |
|
'chatbot_demo.documents', |
|
{'document': pxt.DocumentType(nullable=True), |
|
'question': pxt.StringType(nullable=True)} |
|
) |
|
|
|
|
|
t.insert({'document': file.name} for file in pdf_files if file.name.endswith('.pdf')) |
|
|
|
|
|
chunks_t = pxt.create_view( |
|
'chatbot_demo.chunks', |
|
t, |
|
iterator=DocumentSplitter.create( |
|
document=t.document, |
|
separators=chunk_separator, |
|
limit=chunk_limit if chunk_separator in ["token_limit", "char_limit"] else None, |
|
metadata='title,heading,sourceline' |
|
) |
|
) |
|
|
|
|
|
chunks_t.add_embedding_index('text', string_embed=e5_embed) |
|
|
|
@chunks_t.query |
|
def top_k(query_text: str): |
|
sim = chunks_t.text.similarity(query_text) |
|
return ( |
|
chunks_t.order_by(sim, asc=False) |
|
.select(chunks_t.text, sim=sim) |
|
.limit(5) |
|
) |
|
|
|
|
|
t['question_context'] = chunks_t.top_k(t.question) |
|
t['prompt'] = create_prompt( |
|
t.question_context, t.question |
|
) |
|
|
|
|
|
msgs = [ |
|
{ |
|
'role': 'system', |
|
'content': 'Answer questions using only the provided context. If the context lacks sufficient information, state this clearly.' |
|
}, |
|
{ |
|
'role': 'user', |
|
'content': t.prompt |
|
} |
|
] |
|
|
|
|
|
t['response'] = openai.chat_completions( |
|
model='gpt-4o-mini-2024-07-18', |
|
messages=msgs, |
|
max_tokens=300, |
|
top_p=0.9, |
|
temperature=0.7 |
|
) |
|
|
|
|
|
t['gpt4omini'] = t.response.choices[0].message.content |
|
|
|
return "Files processed successfully!" |
|
|
|
def get_answer(msg): |
|
|
|
t = pxt.get_table('chatbot_demo.documents') |
|
chunks_t = pxt.get_table('chatbot_demo.chunks') |
|
|
|
|
|
t.insert([{'question': msg}]) |
|
|
|
answer = t.select(t.gpt4omini).where(t.question == msg).collect()['gpt4omini'][0] |
|
|
|
return answer |
|
|
|
def respond(message, chat_history): |
|
bot_message = get_answer(message) |
|
chat_history.append((message, bot_message)) |
|
return "", chat_history |
|
|
|
|
|
with gr.Blocks(theme=Monochrome()) as demo: |
|
gr.Markdown( |
|
""" |
|
<div> |
|
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 200px; margin-bottom: 20px;" /> |
|
<h1 style="margin-bottom: 0.5em;">AI Chatbot With Retrieval-Augmented Generation (RAG)</h1> |
|
</div> |
|
""" |
|
) |
|
gr.HTML( |
|
""" |
|
<p> |
|
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data. |
|
</p> |
|
|
|
<div style="background-color: #E5DDD4; border: 1px solid #e9ecef; color: #000000; border-radius: 8px; padding: 15px; margin-bottom: 20px;"> |
|
<strong style="color: #000000">Disclaimer:</strong> This app is best run on your own hardware with a GPU for optimal performance. This Hugging Face Space uses the free tier (2vCPU, 16GB RAM), which results in slower processing times. If you wish to use this app with your own hardware for improved performance, you can <a href="https://huggingface.co/spaces/Pixeltable/AI-Chatbot-With-Retrieval-Augmented-Generation?duplicate=true" target="_blank" style="color: #4D148C; text-decoration: none; font-weight: bold;">duplicate this Hugging Face Space</a>, run it locally, or use Google Colab with the Free limited GPU support. |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion("What This Demo Does", open = True): |
|
gr.Markdown(""" |
|
- Upload multiple PDF documents. |
|
- Process and index the content of these documents. |
|
- Ask questions about the content and Receive AI-generated answers that are grounded. |
|
""") |
|
with gr.Column(): |
|
with gr.Accordion("How does it work?", open = True): |
|
gr.Markdown(""" |
|
- When a user asks a question, the system searches for the most relevant chunks of text from the uploaded documents. |
|
- It then uses these relevant chunks as context for a large language model (LLM) to generate an answer. |
|
- The LLM formulates a response based on the provided context and the user's question. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple") |
|
chunk_limit = gr.Slider(minimum=100, maximum=500, value=300, step=5, label="Chunk Size Limit") |
|
chunk_separator = gr.Dropdown( |
|
choices=["token_limit", "char_limit", "sentence", "paragraph", "heading"], |
|
value="token_limit", |
|
label="Chunk Separator" |
|
) |
|
process_button = gr.Button("Process Files") |
|
process_output = gr.Textbox(label="Processing Output") |
|
|
|
with gr.Column(scale=2): |
|
chatbot = gr.Chatbot(label="Chat History") |
|
msg = gr.Textbox(label="Your Question", placeholder="Ask a question about the uploaded documents") |
|
submit = gr.Button("Submit") |
|
|
|
process_button.click(process_files, inputs=[pdf_files, chunk_limit, chunk_separator], outputs=[process_output]) |
|
submit.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |