PierreBrunelle
commited on
Commit
•
e1aa0dd
1
Parent(s):
514c787
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import io
|
4 |
+
import base64
|
5 |
+
import uuid
|
6 |
+
import pixeltable as pxt
|
7 |
+
from pixeltable.iterators import DocumentSplitter
|
8 |
+
import numpy as np
|
9 |
+
from pixeltable.functions.huggingface import sentence_transformer
|
10 |
+
from pixeltable.functions import openai
|
11 |
+
from gradio.themes import Monochrome
|
12 |
+
|
13 |
+
import os
|
14 |
+
import getpass
|
15 |
+
|
16 |
+
# Store API keys
|
17 |
+
if 'OPENAI_API_KEY' not in os.environ:
|
18 |
+
os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API key:')
|
19 |
+
|
20 |
+
# Set up embedding function
|
21 |
+
@pxt.expr_udf
|
22 |
+
def e5_embed(text: str) -> np.ndarray:
|
23 |
+
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
|
24 |
+
|
25 |
+
# Create prompt function
|
26 |
+
@pxt.udf
|
27 |
+
def create_prompt(top_k_list: list[dict], question: str) -> str:
|
28 |
+
concat_top_k = '\n\n'.join(
|
29 |
+
elt['text'] for elt in reversed(top_k_list)
|
30 |
+
)
|
31 |
+
return f'''
|
32 |
+
PASSAGES:
|
33 |
+
{concat_top_k}
|
34 |
+
QUESTION:
|
35 |
+
{question}'''
|
36 |
+
|
37 |
+
def process_files(pdf_files, chunk_limit, chunk_separator):
|
38 |
+
# Initialize Pixeltable
|
39 |
+
pxt.drop_dir('chatbot_demo', force=True)
|
40 |
+
pxt.create_dir('chatbot_demo')
|
41 |
+
|
42 |
+
# Create a table to store the uploaded PDF documents
|
43 |
+
t = pxt.create_table(
|
44 |
+
'chatbot_demo.documents',
|
45 |
+
{'document': pxt.DocumentType(nullable=True),
|
46 |
+
'question': pxt.StringType(nullable=True)}
|
47 |
+
)
|
48 |
+
|
49 |
+
# Insert the PDF files into the documents table
|
50 |
+
t.insert({'document': file.name} for file in pdf_files if file.name.endswith('.pdf'))
|
51 |
+
|
52 |
+
# Create a view that splits the documents into smaller chunks
|
53 |
+
chunks_t = pxt.create_view(
|
54 |
+
'chatbot_demo.chunks',
|
55 |
+
t,
|
56 |
+
iterator=DocumentSplitter.create(
|
57 |
+
document=t.document,
|
58 |
+
separators=chunk_separator,
|
59 |
+
limit=chunk_limit if chunk_separator in ["token_limit", "char_limit"] else None,
|
60 |
+
metadata='title,heading,sourceline'
|
61 |
+
)
|
62 |
+
)
|
63 |
+
|
64 |
+
# Add an embedding index to the chunks for similarity search
|
65 |
+
chunks_t.add_embedding_index('text', string_embed=e5_embed)
|
66 |
+
|
67 |
+
try:
|
68 |
+
@chunks_t.query
|
69 |
+
def top_k(query_text: str):
|
70 |
+
sim = chunks_t.text.similarity(query_text)
|
71 |
+
return (
|
72 |
+
chunks_t.order_by(sim, asc=False)
|
73 |
+
.select(chunks_t.text, sim=sim)
|
74 |
+
.limit(5)
|
75 |
+
)
|
76 |
+
except Exception:
|
77 |
+
pass
|
78 |
+
|
79 |
+
# Add computed columns to the table for context retrieval and prompt creation
|
80 |
+
t['question_context'] = chunks_t.top_k(t.question)
|
81 |
+
t['prompt'] = create_prompt(
|
82 |
+
t.question_context, t.question
|
83 |
+
)
|
84 |
+
|
85 |
+
# Prepare messages for the API
|
86 |
+
msgs = [
|
87 |
+
{
|
88 |
+
'role': 'system',
|
89 |
+
'content': 'Read the following passages and answer the question based on their contents.'
|
90 |
+
},
|
91 |
+
{
|
92 |
+
'role': 'user',
|
93 |
+
'content': t.prompt
|
94 |
+
}
|
95 |
+
]
|
96 |
+
|
97 |
+
# Add OpenAI response column
|
98 |
+
t['response'] = openai.chat_completions(
|
99 |
+
model='gpt-4o-mini-2024-07-18',
|
100 |
+
messages=msgs,
|
101 |
+
max_tokens=300,
|
102 |
+
top_p=0.9,
|
103 |
+
temperature=0.7
|
104 |
+
)
|
105 |
+
|
106 |
+
# Extract the answer text from the API response
|
107 |
+
t['gpt4omini'] = t.response.choices[0].message.content
|
108 |
+
|
109 |
+
return "Files processed successfully!"
|
110 |
+
|
111 |
+
def get_answer(msg):
|
112 |
+
|
113 |
+
t = pxt.get_table('chatbot_demo.documents')
|
114 |
+
chunks_t = pxt.get_table('chatbot_demo.chunks')
|
115 |
+
|
116 |
+
# Insert the question into the table
|
117 |
+
t.insert([{'question': msg}])
|
118 |
+
|
119 |
+
answer = t.select(t.gpt4omini).tail(1)['gpt4omini'][0]
|
120 |
+
|
121 |
+
return answer
|
122 |
+
|
123 |
+
# Gradio interface
|
124 |
+
with gr.Blocks(theme=Monochrome()) as demo:
|
125 |
+
gr.Markdown(
|
126 |
+
"""
|
127 |
+
<div>
|
128 |
+
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 200px; margin-bottom: 20px;" />
|
129 |
+
<h1 style="margin-bottom: 0.5em;">AI Chatbot With Retrieval-Augmented Generation (RAG)</h1>
|
130 |
+
</div>
|
131 |
+
"""
|
132 |
+
)
|
133 |
+
gr.HTML(
|
134 |
+
"""
|
135 |
+
<p>
|
136 |
+
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data.
|
137 |
+
</p>
|
138 |
+
"""
|
139 |
+
)
|
140 |
+
|
141 |
+
with gr.Row():
|
142 |
+
with gr.Column():
|
143 |
+
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
|
144 |
+
chunk_limit = gr.Slider(minimum=100, maximum=500, value=300, step=5, label="Chunk Size Limit (only used when the separator is token_/char_limit)")
|
145 |
+
chunk_separator = gr.Dropdown(
|
146 |
+
choices=["token_limit", "char_limit", "sentence", "paragraph", "heading"],
|
147 |
+
value="token_limit",
|
148 |
+
label="Chunk Separator"
|
149 |
+
)
|
150 |
+
process_button = gr.Button("Process Files")
|
151 |
+
process_output = gr.Textbox(label="Processing Output")
|
152 |
+
|
153 |
+
with gr.Column():
|
154 |
+
chatbot = gr.Chatbot(label="Chat History")
|
155 |
+
msg = gr.Textbox(label="Your Question")
|
156 |
+
submit = gr.Button("Submit")
|
157 |
+
|
158 |
+
def respond(message, chat_history):
|
159 |
+
bot_message = get_answer(message)
|
160 |
+
chat_history.append((message, bot_message))
|
161 |
+
return "", chat_history
|
162 |
+
|
163 |
+
submit.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
|
164 |
+
process_button.click(process_files, inputs=[pdf_files, chunk_limit, chunk_separator], outputs=[process_output])
|
165 |
+
|
166 |
+
if __name__ == "__main__":
|
167 |
+
demo.launch(debug=True)
|