import math import numpy as np import torch from torch import nn from torch.nn import functional as F from munch import Munch import json class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def intersperse(lst, item): result = [item] * (len(lst) * 2 + 1) result[1::2] = lst return result def kl_divergence(m_p, logs_p, m_q, logs_q): """KL(P||Q)""" kl = (logs_q - logs_p) - 0.5 kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q) return kl def rand_gumbel(shape): """Sample from the Gumbel distribution, protect from overflows.""" uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 return -torch.log(-torch.log(uniform_samples)) def rand_gumbel_like(x): g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) return g def slice_segments(x, ids_str, segment_size=4): ret = torch.zeros_like(x[:, :, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, :, idx_str:idx_end] return ret def slice_segments_audio(x, ids_str, segment_size=4): ret = torch.zeros_like(x[:, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, idx_str:idx_end] return ret def rand_slice_segments(x, x_lengths=None, segment_size=4): b, d, t = x.size() if x_lengths is None: x_lengths = t ids_str_max = x_lengths - segment_size + 1 ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(dtype=torch.long) ret = slice_segments(x, ids_str, segment_size) return ret, ids_str def get_timing_signal_1d( length, channels, min_timescale=1.0, max_timescale=1.0e4): position = torch.arange(length, dtype=torch.float) num_timescales = channels // 2 log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / (num_timescales - 1)) inv_timescales = min_timescale * torch.exp( torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment) scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) signal = F.pad(signal, [0, 0, 0, channels % 2]) signal = signal.view(1, channels, length) return signal def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): b, channels, length = x.size() signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) return x + signal.to(dtype=x.dtype, device=x.device) def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): b, channels, length = x.size() signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) def subsequent_mask(length): mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) return mask @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def shift_1d(x): x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] return x def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def generate_path(duration, mask): """ duration: [b, 1, t_x] mask: [b, 1, t_y, t_x] """ device = duration.device b, _, t_y, t_x = mask.shape cum_duration = torch.cumsum(duration, -1) cum_duration_flat = cum_duration.view(b * t_x) path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) path = path.view(b, t_x, t_y) path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] path = path.unsqueeze(1).transpose(2,3) * mask return path def clip_grad_value_(parameters, clip_value, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) if clip_value is not None: clip_value = float(clip_value) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type if clip_value is not None: p.grad.data.clamp_(min=-clip_value, max=clip_value) total_norm = total_norm ** (1. / norm_type) return total_norm def log_norm(x, mean=-4, std=4, dim=2): """ normalized log mel -> mel -> norm -> log(norm) """ x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) return x def load_F0_models(path): # load F0 model from .JDC.model import JDCNet F0_model = JDCNet(num_class=1, seq_len=192) params = torch.load(path, map_location='cpu')['net'] F0_model.load_state_dict(params) _ = F0_model.train() return F0_model def modify_w2v_forward(self, output_layer=15): ''' change forward method of w2v encoder to get its intermediate layer output :param self: :param layer: :return: ''' from transformers.modeling_outputs import BaseModelOutput def forward( hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None conv_attention_mask = attention_mask if attention_mask is not None: # make sure padded tokens output 0 hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) hidden_states = self.dropout(hidden_states) if self.embed_positions is not None: relative_position_embeddings = self.embed_positions(hidden_states) else: relative_position_embeddings = None deepspeed_zero3_is_enabled = False for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, relative_position_embeddings, output_attentions, conv_attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, conv_attention_mask=conv_attention_mask, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if i == output_layer - 1: break if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) return forward def build_model(args, stage='codec'): if stage == 'codec': # Generators from dac.model.dac import Encoder, Decoder from modules.quantize import FAquantizer, FApredictors, CNNLSTM, GradientReversal # Discriminators from dac.model.discriminator import Discriminator encoder = Encoder(d_model=args.DAC.encoder_dim, strides=args.DAC.encoder_rates, d_latent=1024, causal=args.causal, lstm=args.lstm,) quantizer = FAquantizer(in_dim=1024, n_p_codebooks=1, n_c_codebooks=args.n_c_codebooks, n_t_codebooks=2, n_r_codebooks=3, codebook_size=1024, codebook_dim=8, quantizer_dropout=0.5, causal=args.causal, separate_prosody_encoder=args.separate_prosody_encoder, timbre_norm=args.timbre_norm, ) fa_predictors = FApredictors(in_dim=1024, use_gr_content_f0=args.use_gr_content_f0, use_gr_prosody_phone=args.use_gr_prosody_phone, use_gr_residual_f0=True, use_gr_residual_phone=True, use_gr_timbre_content=True, use_gr_timbre_prosody=args.use_gr_timbre_prosody, use_gr_x_timbre=True, norm_f0=args.norm_f0, timbre_norm=args.timbre_norm, use_gr_content_global_f0=args.use_gr_content_global_f0, ) decoder = Decoder( input_channel=1024, channels=args.DAC.decoder_dim, rates=args.DAC.decoder_rates, causal=args.causal, lstm=args.lstm, ) discriminator = Discriminator( rates=[], periods=[2, 3, 5, 7, 11], fft_sizes=[2048, 1024, 512], sample_rate=args.DAC.sr, bands=[(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)], ) nets = Munch( encoder=encoder, quantizer=quantizer, decoder=decoder, discriminator=discriminator, fa_predictors=fa_predictors, ) elif stage == 'beta_vae': from dac.model.dac import Encoder, Decoder from modules.beta_vae import BetaVAE_Linear # Discriminators from dac.model.discriminator import Discriminator encoder = Encoder(d_model=args.DAC.encoder_dim, strides=args.DAC.encoder_rates, d_latent=1024, causal=args.causal, lstm=args.lstm, ) decoder = Decoder( input_channel=1024, channels=args.DAC.decoder_dim, rates=args.DAC.decoder_rates, causal=args.causal, lstm=args.lstm, ) discriminator = Discriminator( rates=[], periods=[2, 3, 5, 7, 11], fft_sizes=[2048, 1024, 512], sample_rate=args.DAC.sr, bands=[(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)], ) beta_vae = BetaVAE_Linear(in_dim=1024, n_hidden=64, latent=8) nets = Munch( encoder=encoder, decoder=decoder, discriminator=discriminator, beta_vae=beta_vae, ) elif stage == 'redecoder': # from vc.models import FastTransformer, SlowTransformer, Mambo from dac.model.dac import Encoder, Decoder from dac.model.discriminator import Discriminator from modules.redecoder import Redecoder encoder = Redecoder(args) decoder = Decoder( input_channel=1024, channels=args.DAC.decoder_dim, rates=args.DAC.decoder_rates, causal=args.decoder_causal, lstm=args.decoder_lstm, ) discriminator = Discriminator( rates=[], periods=[2, 3, 5, 7, 11], fft_sizes=[2048, 1024, 512], sample_rate=args.DAC.sr, bands=[(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)], ) nets = Munch( encoder=encoder, decoder=decoder, discriminator=discriminator, ) elif stage == 'encoder': from dac.model.dac import Encoder, Decoder from modules.quantize import FAquantizer encoder = Encoder(d_model=args.DAC.encoder_dim, strides=args.DAC.encoder_rates, d_latent=1024, causal=args.encoder_causal, lstm=args.encoder_lstm,) quantizer = FAquantizer(in_dim=1024, n_p_codebooks=1, n_c_codebooks=args.n_c_codebooks, n_t_codebooks=2, n_r_codebooks=3, codebook_size=1024, codebook_dim=8, quantizer_dropout=0.5, causal=args.encoder_causal, separate_prosody_encoder=args.separate_prosody_encoder, timbre_norm=args.timbre_norm, ) nets = Munch( encoder=encoder, quantizer=quantizer, ) else: raise ValueError(f"Unknown stage: {stage}") return nets def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[], is_distributed=False): state = torch.load(path, map_location='cpu') params = state['net'] for key in model: if key in params and key not in ignore_modules: if not is_distributed: # strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix for k in list(params[key].keys()): if k.startswith('module.'): params[key][k[len("module."):]] = params[key][k] del params[key][k] print('%s loaded' % key) model[key].load_state_dict(params[key], strict=True) _ = [model[key].eval() for key in model] if not load_only_params: epoch = state["epoch"] + 1 iters = state["iters"] optimizer.load_state_dict(state["optimizer"]) optimizer.load_scheduler_state_dict(state["scheduler"]) else: epoch = state["epoch"] + 1 iters = state["iters"] return model, optimizer, epoch, iters def recursive_munch(d): if isinstance(d, dict): return Munch((k, recursive_munch(v)) for k, v in d.items()) elif isinstance(d, list): return [recursive_munch(v) for v in d] else: return d