Spaces:
Sleeping
Sleeping
Commit
·
1ea681e
1
Parent(s):
33fd881
Move app.py to root directory for Hugging Face Space deployment
Browse files- README.md +1 -1
- app.py +51 -61
- requirements.txt +2 -2
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: blue
|
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.2
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
|
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.2
|
8 |
+
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
app.py
CHANGED
@@ -81,25 +81,51 @@ def initialize_model():
|
|
81 |
del model
|
82 |
torch.cuda.empty_cache()
|
83 |
|
84 |
-
#
|
|
|
|
|
|
|
|
|
85 |
model = LLaVA(
|
86 |
vision_model_path="openai/clip-vit-base-patch32",
|
87 |
language_model_path="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
88 |
-
device=
|
89 |
-
projection_hidden_dim=2048
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
|
92 |
# Configure model for inference
|
93 |
if hasattr(model, 'language_model'):
|
94 |
model.language_model.config.use_cache = False
|
95 |
model.language_model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
model_status.update({
|
98 |
"initialized": True,
|
99 |
"device": str(model.device),
|
100 |
-
"error": None
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
})
|
102 |
-
logger.info(f"Model successfully initialized on {model.device}")
|
103 |
return True
|
104 |
|
105 |
except Exception as e:
|
@@ -167,16 +193,25 @@ def process_image(
|
|
167 |
# Clear memory
|
168 |
torch.cuda.empty_cache()
|
169 |
|
170 |
-
# Process image
|
171 |
with torch.inference_mode():
|
172 |
try:
|
173 |
logger.info("Generating response...")
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
response = model.generate_from_image(
|
175 |
image_path=temp_path,
|
176 |
prompt=prompt,
|
177 |
max_new_tokens=max_new_tokens,
|
178 |
temperature=temperature,
|
179 |
-
top_p=top_p
|
|
|
|
|
|
|
180 |
)
|
181 |
|
182 |
if not response:
|
@@ -217,25 +252,8 @@ def process_image(
|
|
217 |
except Exception as e:
|
218 |
logger.warning(f"Failed to clear CUDA cache: {str(e)}")
|
219 |
|
220 |
-
def get_status_text() -> str:
|
221 |
-
"""Get a formatted status text for display."""
|
222 |
-
try:
|
223 |
-
status = {
|
224 |
-
"Model Initialized": "Yes" if model is not None else "No",
|
225 |
-
"Device": str(model.device) if model is not None else "None",
|
226 |
-
"Last Error": model_status.get("last_error", "None"),
|
227 |
-
"Memory Usage": {
|
228 |
-
"CUDA Available": "Yes" if torch.cuda.is_available() else "No",
|
229 |
-
"Memory Allocated": f"{torch.cuda.memory_allocated() / 1024**2:.2f} MB" if torch.cuda.is_available() else "N/A",
|
230 |
-
"Memory Reserved": f"{torch.cuda.memory_reserved() / 1024**2:.2f} MB" if torch.cuda.is_available() else "N/A"
|
231 |
-
}
|
232 |
-
}
|
233 |
-
return "\n".join(f"{k}: {v}" for k, v in status.items())
|
234 |
-
except Exception as e:
|
235 |
-
return f"Error getting status: {str(e)}"
|
236 |
-
|
237 |
def create_interface():
|
238 |
-
"""Create
|
239 |
try:
|
240 |
with gr.Blocks(title="LLaVA Chat", theme=gr.themes.Soft()) as demo:
|
241 |
gr.Markdown("""
|
@@ -252,19 +270,13 @@ def create_interface():
|
|
252 |
""")
|
253 |
|
254 |
with gr.Row():
|
255 |
-
with gr.Column(
|
256 |
-
# Input components
|
257 |
-
image_input = gr.Image(
|
258 |
-
type="pil",
|
259 |
-
label="Upload Image",
|
260 |
-
image_mode="RGB",
|
261 |
-
format="PNG"
|
262 |
-
)
|
263 |
prompt_input = gr.Textbox(
|
264 |
label="Ask about the image",
|
265 |
placeholder="What can you see in this image?",
|
266 |
-
lines=3
|
267 |
-
max_lines=5
|
268 |
)
|
269 |
|
270 |
with gr.Accordion("Advanced Settings", open=False):
|
@@ -291,31 +303,17 @@ def create_interface():
|
|
291 |
)
|
292 |
|
293 |
submit_btn = gr.Button("Generate Response", variant="primary")
|
294 |
-
status_btn = gr.Button("Check Status", variant="secondary")
|
295 |
|
296 |
-
with gr.Column(
|
297 |
output = gr.Textbox(
|
298 |
label="Model Response",
|
299 |
lines=10,
|
300 |
show_copy_button=True
|
301 |
)
|
302 |
-
status_output = gr.Textbox(
|
303 |
-
label="System Status",
|
304 |
-
lines=5,
|
305 |
-
show_copy_button=True
|
306 |
-
)
|
307 |
-
|
308 |
-
# Set up event handlers with proper error handling
|
309 |
-
def safe_process_image(*args):
|
310 |
-
try:
|
311 |
-
return process_image(*args)
|
312 |
-
except Exception as e:
|
313 |
-
logger.error(f"Interface error: {str(e)}")
|
314 |
-
logger.error(traceback.format_exc())
|
315 |
-
return f"Error: {str(e)}"
|
316 |
|
|
|
317 |
submit_btn.click(
|
318 |
-
fn=
|
319 |
inputs=[
|
320 |
image_input,
|
321 |
prompt_input,
|
@@ -323,15 +321,7 @@ def create_interface():
|
|
323 |
temperature,
|
324 |
top_p
|
325 |
],
|
326 |
-
outputs=output
|
327 |
-
api_name="process_image"
|
328 |
-
)
|
329 |
-
|
330 |
-
status_btn.click(
|
331 |
-
fn=get_status_text,
|
332 |
-
inputs=[],
|
333 |
-
outputs=status_output,
|
334 |
-
api_name="check_status"
|
335 |
)
|
336 |
|
337 |
logger.info("Successfully created Gradio interface")
|
|
|
81 |
del model
|
82 |
torch.cuda.empty_cache()
|
83 |
|
84 |
+
# Set device
|
85 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
86 |
+
logger.info(f"Using device: {device}")
|
87 |
+
|
88 |
+
# Initialize new model with Hugging Face specific parameters
|
89 |
model = LLaVA(
|
90 |
vision_model_path="openai/clip-vit-base-patch32",
|
91 |
language_model_path="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
92 |
+
device=device,
|
93 |
+
projection_hidden_dim=2048,
|
94 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
95 |
+
low_cpu_mem_usage=True,
|
96 |
+
use_safetensors=True,
|
97 |
+
load_in_8bit=True if device == "cuda" else False,
|
98 |
+
trust_remote_code=True
|
99 |
)
|
100 |
|
101 |
# Configure model for inference
|
102 |
if hasattr(model, 'language_model'):
|
103 |
model.language_model.config.use_cache = False
|
104 |
model.language_model.eval()
|
105 |
+
|
106 |
+
# Set generation config
|
107 |
+
if hasattr(model.language_model, 'generation_config'):
|
108 |
+
model.language_model.generation_config.do_sample = True
|
109 |
+
model.language_model.generation_config.max_new_tokens = 256
|
110 |
+
model.language_model.generation_config.temperature = 0.7
|
111 |
+
model.language_model.generation_config.top_p = 0.9
|
112 |
+
model.language_model.generation_config.pad_token_id = model.language_model.config.eos_token_id
|
113 |
+
|
114 |
+
# Move model to device
|
115 |
+
model = model.to(device)
|
116 |
|
117 |
model_status.update({
|
118 |
"initialized": True,
|
119 |
"device": str(model.device),
|
120 |
+
"error": None,
|
121 |
+
"model_info": {
|
122 |
+
"vision_model": "openai/clip-vit-base-patch32",
|
123 |
+
"language_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
124 |
+
"dtype": str(model.dtype),
|
125 |
+
"device": str(model.device)
|
126 |
+
}
|
127 |
})
|
128 |
+
logger.info(f"Model successfully initialized on {model.device} with dtype {model.dtype}")
|
129 |
return True
|
130 |
|
131 |
except Exception as e:
|
|
|
193 |
# Clear memory
|
194 |
torch.cuda.empty_cache()
|
195 |
|
196 |
+
# Process image with Hugging Face specific settings
|
197 |
with torch.inference_mode():
|
198 |
try:
|
199 |
logger.info("Generating response...")
|
200 |
+
# Update generation config if available
|
201 |
+
if hasattr(model, 'language_model') and hasattr(model.language_model, 'generation_config'):
|
202 |
+
model.language_model.generation_config.max_new_tokens = max_new_tokens
|
203 |
+
model.language_model.generation_config.temperature = temperature
|
204 |
+
model.language_model.generation_config.top_p = top_p
|
205 |
+
|
206 |
response = model.generate_from_image(
|
207 |
image_path=temp_path,
|
208 |
prompt=prompt,
|
209 |
max_new_tokens=max_new_tokens,
|
210 |
temperature=temperature,
|
211 |
+
top_p=top_p,
|
212 |
+
do_sample=True,
|
213 |
+
num_beams=1,
|
214 |
+
pad_token_id=model.language_model.config.eos_token_id if hasattr(model, 'language_model') else None
|
215 |
)
|
216 |
|
217 |
if not response:
|
|
|
252 |
except Exception as e:
|
253 |
logger.warning(f"Failed to clear CUDA cache: {str(e)}")
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
def create_interface():
|
256 |
+
"""Create a simplified Gradio interface."""
|
257 |
try:
|
258 |
with gr.Blocks(title="LLaVA Chat", theme=gr.themes.Soft()) as demo:
|
259 |
gr.Markdown("""
|
|
|
270 |
""")
|
271 |
|
272 |
with gr.Row():
|
273 |
+
with gr.Column():
|
274 |
+
# Input components
|
275 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
|
|
|
|
|
|
|
|
|
|
276 |
prompt_input = gr.Textbox(
|
277 |
label="Ask about the image",
|
278 |
placeholder="What can you see in this image?",
|
279 |
+
lines=3
|
|
|
280 |
)
|
281 |
|
282 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
303 |
)
|
304 |
|
305 |
submit_btn = gr.Button("Generate Response", variant="primary")
|
|
|
306 |
|
307 |
+
with gr.Column():
|
308 |
output = gr.Textbox(
|
309 |
label="Model Response",
|
310 |
lines=10,
|
311 |
show_copy_button=True
|
312 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
# Set up event handler
|
315 |
submit_btn.click(
|
316 |
+
fn=process_image,
|
317 |
inputs=[
|
318 |
image_input,
|
319 |
prompt_input,
|
|
|
321 |
temperature,
|
322 |
top_p
|
323 |
],
|
324 |
+
outputs=output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
)
|
326 |
|
327 |
logger.info("Successfully created Gradio interface")
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
transformers>=4.36.0
|
2 |
torch>=2.1.0
|
3 |
pillow>=10.0.0
|
4 |
-
gradio
|
5 |
fastapi>=0.100.0
|
6 |
uvicorn>=0.23.0
|
7 |
accelerate>=0.25.0
|
@@ -24,4 +24,4 @@ bcrypt>=4.0.1
|
|
24 |
aiofiles>=23.2.0
|
25 |
httpx>=0.26.0
|
26 |
# Memory optimization
|
27 |
-
optimum>=1.16.0
|
|
|
1 |
transformers>=4.36.0
|
2 |
torch>=2.1.0
|
3 |
pillow>=10.0.0
|
4 |
+
gradio>=4.0.0
|
5 |
fastapi>=0.100.0
|
6 |
uvicorn>=0.23.0
|
7 |
accelerate>=0.25.0
|
|
|
24 |
aiofiles>=23.2.0
|
25 |
httpx>=0.26.0
|
26 |
# Memory optimization
|
27 |
+
optimum>=1.16.0
|