Prathamesh1420's picture
Update main.py
20f6776 verified
raw
history blame
5.44 kB
import streamlit as st
import os
from PIL import Image
import numpy as np
import pickle
import tensorflow
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import GlobalMaxPooling2D
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from sklearn.neighbors import NearestNeighbors
from numpy.linalg import norm
from chatbot import Chatbot # Assuming you have a chatbot module
import zipfile
# Define the path to the zip file and the directory to extract to
zip_file_path = 'images.zip'
extract_to = 'images'
# Check if the images directory already exists to avoid re-extracting
if not os.path.exists(extract_to):
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
# Define function for feature extraction
def feature_extraction(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img_array)
result = model.predict(preprocessed_img).flatten()
normalized_result = result / norm(result)
return normalized_result
# Define function for recommendation
def recommend(features, feature_list):
neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean')
neighbors.fit(feature_list)
distances, indices = neighbors.kneighbors([features])
return indices
# Function to save uploaded file
def save_uploaded_file(uploaded_file):
try:
# Ensure the uploads directory exists
if not os.path.exists('uploads'):
os.makedirs('uploads')
file_path = os.path.join('uploads', uploaded_file.name)
with open(file_path, 'wb') as f:
f.write(uploaded_file.getbuffer())
st.success(f"File saved to {file_path}")
return file_path
except Exception as e:
st.error(f"Error saving file: {e}")
return None
# Function to show dashboard content
def show_dashboard():
st.header("Fashion Recommender System")
chatbot = Chatbot()
# Load ResNet model for image feature extraction
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model.trainable = False
model = tensorflow.keras.Sequential([
model,
GlobalMaxPooling2D()
])
try:
feature_list = np.array(pickle.load(open('embeddings.pkl', 'rb')))
filenames = pickle.load(open('filenames.pkl', 'rb'))
except Exception as e:
st.error(f"Error loading pickle files: {e}")
return
# Print the filenames to verify
st.write("List of filenames loaded:")
st.write(filenames)
# File upload section
uploaded_file = st.file_uploader("Choose an image")
if uploaded_file is not None:
file_path = save_uploaded_file(uploaded_file)
if file_path:
# Display the uploaded image
try:
display_image = Image.open(file_path)
st.image(display_image)
except Exception as e:
st.error(f"Error displaying uploaded image: {e}")
# Feature extraction
try:
features = feature_extraction(file_path, model)
except Exception as e:
st.error(f"Error extracting features: {e}")
return
# Recommendation
try:
indices = recommend(features, feature_list)
except Exception as e:
st.error(f"Error in recommendation: {e}")
return
# Display recommended products
col1, col2, col3, col4, col5 = st.columns(5)
columns = [col1, col2, col3, col4, col5]
for col, idx in zip(columns, indices[0]):
file_path = filenames[idx]
st.write(f"Trying to open file: {file_path}") # Add debug info
try:
if os.path.exists(file_path):
with col:
st.image(file_path)
else:
st.error(f"File does not exist: {file_path}")
except Exception as e:
st.error(f"Error opening file {file_path}: {e}")
else:
st.error("Some error occurred in file upload")
# Chatbot section
user_question = st.text_input("Ask a question:")
if user_question:
bot_response, recommended_products = chatbot.generate_response(user_question)
st.write("Chatbot:", bot_response)
# Display recommended products
for result in recommended_products:
pid = result['corpus_id']
product_info = chatbot.product_data[pid]
st.write("Product Name:", product_info['productDisplayName'])
st.write("Category:", product_info['masterCategory'])
st.write("Article Type:", product_info['articleType'])
st.write("Usage:", product_info['usage'])
st.write("Season:", product_info['season'])
st.write("Gender:", product_info['gender'])
st.image(chatbot.images[pid])
# Main Streamlit app
def main():
# Give title to the app
st.title("Fashion Recommender System")
# Show dashboard content directly
show_dashboard()
# Run the main app
if __name__ == "__main__":
main()